Dynamic legislative policy making

We prove existence of stationary Markov perfect equilibria in an infinite-horizon model of legislative policy making in which the policy outcome in one period determines the status quo for the next. We allow for a multidimensional policy space and arbitrary smooth stage utilities, and we assume pref...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of economic theory 2012-09, Vol.147 (5), p.1653-1688
Hauptverfasser: Duggan, John, Kalandrakis, Tasos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1688
container_issue 5
container_start_page 1653
container_title Journal of economic theory
container_volume 147
creator Duggan, John
Kalandrakis, Tasos
description We prove existence of stationary Markov perfect equilibria in an infinite-horizon model of legislative policy making in which the policy outcome in one period determines the status quo for the next. We allow for a multidimensional policy space and arbitrary smooth stage utilities, and we assume preferences and the status quo are subject to arbitrarily small shocks. We prove that equilibrium continuation values are differentiable and that proposal strategies are continuous almost everywhere. We establish upper hemicontinuity of the equilibrium correspondence, and we provide weak conditions under which each equilibrium of our model determines an aperiodic transition probability over policies. We establish a convergence theorem giving conditions under which the invariant distributions generated by stationary equilibria must be close to the core in a canonical spatial model. Finally, we extend the analysis to sequential move stochastic games and to a version of the model in which the proposer and voting rule are determined by play of a finite, perfect information game.
doi_str_mv 10.1016/j.jet.2012.01.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136527264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022053112000166</els_id><sourcerecordid>1136527264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-8876081be299b17fa940b68d35fc380e64dd0f592e0651e36268cbc6cb5d45e23</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-AHcjbty03ps0aYorGZ8w4EbXoU1vh9Q-xqYzMP_eDHXlQuHC2XznwP0Yu0SIEVDd1nFNY8wBeQwYTh6xGUImo5QLecxmAJxHIAWesjPvawBEqdSMXT3su7x1dtHQ2vkmH92OFpu-cXa_aPNP163P2UmVN54ufnLOPp4e35cv0ert-XV5v4psIuUYaZ0q0FgQz7IC0yrPEiiULoWsrNBAKilLqGTGCZREEoorbQurbCHLRBIXc3Yz7W6G_mtLfjSt85aaJu-o33qDKJTkKVfJ_yiIVGsdLAT0-hda99uhC48cKMFBBkuBwomyQ-_9QJXZDK7Nh32AzMGvqU3waw5-DaCZlu-mDgUpO0eD8dZRZ6l0A9nRlL37o_0NwTB_bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033205109</pqid></control><display><type>article</type><title>Dynamic legislative policy making</title><source>Access via ScienceDirect (Elsevier)</source><creator>Duggan, John ; Kalandrakis, Tasos</creator><creatorcontrib>Duggan, John ; Kalandrakis, Tasos</creatorcontrib><description>We prove existence of stationary Markov perfect equilibria in an infinite-horizon model of legislative policy making in which the policy outcome in one period determines the status quo for the next. We allow for a multidimensional policy space and arbitrary smooth stage utilities, and we assume preferences and the status quo are subject to arbitrarily small shocks. We prove that equilibrium continuation values are differentiable and that proposal strategies are continuous almost everywhere. We establish upper hemicontinuity of the equilibrium correspondence, and we provide weak conditions under which each equilibrium of our model determines an aperiodic transition probability over policies. We establish a convergence theorem giving conditions under which the invariant distributions generated by stationary equilibria must be close to the core in a canonical spatial model. Finally, we extend the analysis to sequential move stochastic games and to a version of the model in which the proposer and voting rule are determined by play of a finite, perfect information game.</description><identifier>ISSN: 0022-0531</identifier><identifier>EISSN: 1095-7235</identifier><identifier>DOI: 10.1016/j.jet.2012.01.015</identifier><identifier>CODEN: JECTAQ</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Bargaining ; Convergence ; Core ; Dynamic game ; Economic policy ; Economic theory ; Economics ; Equilibrium ; Equilibrium models ; Game theory ; Games ; Invariants ; Legislature ; Markov analysis ; Markovian processes ; Mathematical analysis ; Policies ; Policy making ; Spatial models ; Stationary equilibrium ; Strategy ; Studies ; Utilities</subject><ispartof>Journal of economic theory, 2012-09, Vol.147 (5), p.1653-1688</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright Elsevier Science Publishing Company, Inc. Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-8876081be299b17fa940b68d35fc380e64dd0f592e0651e36268cbc6cb5d45e23</citedby><cites>FETCH-LOGICAL-c455t-8876081be299b17fa940b68d35fc380e64dd0f592e0651e36268cbc6cb5d45e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jet.2012.01.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Duggan, John</creatorcontrib><creatorcontrib>Kalandrakis, Tasos</creatorcontrib><title>Dynamic legislative policy making</title><title>Journal of economic theory</title><description>We prove existence of stationary Markov perfect equilibria in an infinite-horizon model of legislative policy making in which the policy outcome in one period determines the status quo for the next. We allow for a multidimensional policy space and arbitrary smooth stage utilities, and we assume preferences and the status quo are subject to arbitrarily small shocks. We prove that equilibrium continuation values are differentiable and that proposal strategies are continuous almost everywhere. We establish upper hemicontinuity of the equilibrium correspondence, and we provide weak conditions under which each equilibrium of our model determines an aperiodic transition probability over policies. We establish a convergence theorem giving conditions under which the invariant distributions generated by stationary equilibria must be close to the core in a canonical spatial model. Finally, we extend the analysis to sequential move stochastic games and to a version of the model in which the proposer and voting rule are determined by play of a finite, perfect information game.</description><subject>Bargaining</subject><subject>Convergence</subject><subject>Core</subject><subject>Dynamic game</subject><subject>Economic policy</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Equilibrium</subject><subject>Equilibrium models</subject><subject>Game theory</subject><subject>Games</subject><subject>Invariants</subject><subject>Legislature</subject><subject>Markov analysis</subject><subject>Markovian processes</subject><subject>Mathematical analysis</subject><subject>Policies</subject><subject>Policy making</subject><subject>Spatial models</subject><subject>Stationary equilibrium</subject><subject>Strategy</subject><subject>Studies</subject><subject>Utilities</subject><issn>0022-0531</issn><issn>1095-7235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-AHcjbty03ps0aYorGZ8w4EbXoU1vh9Q-xqYzMP_eDHXlQuHC2XznwP0Yu0SIEVDd1nFNY8wBeQwYTh6xGUImo5QLecxmAJxHIAWesjPvawBEqdSMXT3su7x1dtHQ2vkmH92OFpu-cXa_aPNP163P2UmVN54ufnLOPp4e35cv0ert-XV5v4psIuUYaZ0q0FgQz7IC0yrPEiiULoWsrNBAKilLqGTGCZREEoorbQurbCHLRBIXc3Yz7W6G_mtLfjSt85aaJu-o33qDKJTkKVfJ_yiIVGsdLAT0-hda99uhC48cKMFBBkuBwomyQ-_9QJXZDK7Nh32AzMGvqU3waw5-DaCZlu-mDgUpO0eD8dZRZ6l0A9nRlL37o_0NwTB_bQ</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Duggan, John</creator><creator>Kalandrakis, Tasos</creator><general>Elsevier Inc</general><general>Elsevier Science Publishing Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120901</creationdate><title>Dynamic legislative policy making</title><author>Duggan, John ; Kalandrakis, Tasos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-8876081be299b17fa940b68d35fc380e64dd0f592e0651e36268cbc6cb5d45e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bargaining</topic><topic>Convergence</topic><topic>Core</topic><topic>Dynamic game</topic><topic>Economic policy</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Equilibrium</topic><topic>Equilibrium models</topic><topic>Game theory</topic><topic>Games</topic><topic>Invariants</topic><topic>Legislature</topic><topic>Markov analysis</topic><topic>Markovian processes</topic><topic>Mathematical analysis</topic><topic>Policies</topic><topic>Policy making</topic><topic>Spatial models</topic><topic>Stationary equilibrium</topic><topic>Strategy</topic><topic>Studies</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duggan, John</creatorcontrib><creatorcontrib>Kalandrakis, Tasos</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of economic theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duggan, John</au><au>Kalandrakis, Tasos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic legislative policy making</atitle><jtitle>Journal of economic theory</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>147</volume><issue>5</issue><spage>1653</spage><epage>1688</epage><pages>1653-1688</pages><issn>0022-0531</issn><eissn>1095-7235</eissn><coden>JECTAQ</coden><abstract>We prove existence of stationary Markov perfect equilibria in an infinite-horizon model of legislative policy making in which the policy outcome in one period determines the status quo for the next. We allow for a multidimensional policy space and arbitrary smooth stage utilities, and we assume preferences and the status quo are subject to arbitrarily small shocks. We prove that equilibrium continuation values are differentiable and that proposal strategies are continuous almost everywhere. We establish upper hemicontinuity of the equilibrium correspondence, and we provide weak conditions under which each equilibrium of our model determines an aperiodic transition probability over policies. We establish a convergence theorem giving conditions under which the invariant distributions generated by stationary equilibria must be close to the core in a canonical spatial model. Finally, we extend the analysis to sequential move stochastic games and to a version of the model in which the proposer and voting rule are determined by play of a finite, perfect information game.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jet.2012.01.015</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0531
ispartof Journal of economic theory, 2012-09, Vol.147 (5), p.1653-1688
issn 0022-0531
1095-7235
language eng
recordid cdi_proquest_miscellaneous_1136527264
source Access via ScienceDirect (Elsevier)
subjects Bargaining
Convergence
Core
Dynamic game
Economic policy
Economic theory
Economics
Equilibrium
Equilibrium models
Game theory
Games
Invariants
Legislature
Markov analysis
Markovian processes
Mathematical analysis
Policies
Policy making
Spatial models
Stationary equilibrium
Strategy
Studies
Utilities
title Dynamic legislative policy making
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20legislative%20policy%20making&rft.jtitle=Journal%20of%20economic%20theory&rft.au=Duggan,%20John&rft.date=2012-09-01&rft.volume=147&rft.issue=5&rft.spage=1653&rft.epage=1688&rft.pages=1653-1688&rft.issn=0022-0531&rft.eissn=1095-7235&rft.coden=JECTAQ&rft_id=info:doi/10.1016/j.jet.2012.01.015&rft_dat=%3Cproquest_cross%3E1136527264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033205109&rft_id=info:pmid/&rft_els_id=S0022053112000166&rfr_iscdi=true