High-performance InGaP/GaAs superlattice–emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode

Based on the employments of an InGaP/GaAs superlattice emitter and a thin InGaAs pseudomorphic base structure, the device with excellent transistor action and multiple S-shaped negative-differential-resistance (NDR) switching behavior are achieved. Under normal transistor operation mode, the tunneli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2012-10, Vol.521, p.168-171
Hauptverfasser: Tsai, Jung-Hui, Huang, Chia-Hong, Lour, Wen-Shiung, Chao, Yi-Ting, Ou-Yang, Jhih-Jhong, Jhou, Jia-Cing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue
container_start_page 168
container_title Thin solid films
container_volume 521
creator Tsai, Jung-Hui
Huang, Chia-Hong
Lour, Wen-Shiung
Chao, Yi-Ting
Ou-Yang, Jhih-Jhong
Jhou, Jia-Cing
description Based on the employments of an InGaP/GaAs superlattice emitter and a thin InGaAs pseudomorphic base structure, the device with excellent transistor action and multiple S-shaped negative-differential-resistance (NDR) switching behavior are achieved. Under normal transistor operation mode, the tunneling electrons could easily transport from InGaP/GaAs superlattice over the n-GaAs emitter layer into the thin InGaAs pseudomorphic base region for reducing the base–emitter turn-on voltage and promoting the current gain. In particular, an interesting multiple S-shaped NDR behavior is observed under inverted operation mode due to the avalanche multiplication and confinement effect for electrons at the interface between superlattice and emitter layer, respectively. As an appropriate voltage source and a load resistor are applied, three stable operation points are obtained.
doi_str_mv 10.1016/j.tsf.2011.12.082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136525048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609012000132</els_id><sourcerecordid>1136525048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-8e1d8a0fd22ebca2ecc16767168397c2dffd876b3e4e06d55112d7fc3e369b283</originalsourceid><addsrcrecordid>eNp9kUGO1DAQRSMEEs3AAdh5g8QmGZfT7SRiNRpBz0gjgQSsLbddnnbLiYPL6RE77sAVOBknwU2PWLKqRf33v6p-Vb0G3gAHeXloMrlGcIAGRMN78aRaQd8NtehaeFqtOF_zWvKBP69eEB045yBEu6p-3fj7fT1jcjGNejLIbqet_nS51VfEaCmLoHP2Bn__-ImjzxkT2_k5Bp1YTnoiTzkm9uDzno1LyH4OyD7XtNczWjbhvc7-iLX1zmHCKXsd6oQn6m8YFdDskdgy2eLspyOmXMBYggsZJzZGiy-rZ04HwleP86L6-uH9l-ub-u7j9vb66q42reS57hFsr7mzQuDOaIHGgOxkB7Jvh84I65ztO7lrcY1c2s0GQNjOmRZbOexE315Ub8--c4rfFqSsRk8GQ9ATxoUUQCs3YsPXJymcpSZFooROzcmPOn1XwNWpEXVQpRF1akSBUKWRwrx5tNdkdHDlfcbTP1B00A9Crovu3VmH5dajx6TIeCzvsj6hycpG_5-UP-hdpxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136525048</pqid></control><display><type>article</type><title>High-performance InGaP/GaAs superlattice–emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tsai, Jung-Hui ; Huang, Chia-Hong ; Lour, Wen-Shiung ; Chao, Yi-Ting ; Ou-Yang, Jhih-Jhong ; Jhou, Jia-Cing</creator><creatorcontrib>Tsai, Jung-Hui ; Huang, Chia-Hong ; Lour, Wen-Shiung ; Chao, Yi-Ting ; Ou-Yang, Jhih-Jhong ; Jhou, Jia-Cing</creatorcontrib><description>Based on the employments of an InGaP/GaAs superlattice emitter and a thin InGaAs pseudomorphic base structure, the device with excellent transistor action and multiple S-shaped negative-differential-resistance (NDR) switching behavior are achieved. Under normal transistor operation mode, the tunneling electrons could easily transport from InGaP/GaAs superlattice over the n-GaAs emitter layer into the thin InGaAs pseudomorphic base region for reducing the base–emitter turn-on voltage and promoting the current gain. In particular, an interesting multiple S-shaped NDR behavior is observed under inverted operation mode due to the avalanche multiplication and confinement effect for electrons at the interface between superlattice and emitter layer, respectively. As an appropriate voltage source and a load resistor are applied, three stable operation points are obtained.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2011.12.082</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Avalanche multiplication ; Confinement effect ; Cross-disciplinary physics: materials science; rheology ; Electric potential ; Electronics ; Emitters (electron) ; Exact sciences and technology ; Gallium arsenide ; Gallium arsenides ; Indium gallium arsenides ; Materials science ; Negative-differential-resistance ; Other semiconductors ; Physics ; Pseudomorphic base ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Specific materials ; Superlattice emitter ; Superlattices ; Transistors ; Turn-on voltage</subject><ispartof>Thin solid films, 2012-10, Vol.521, p.168-171</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-8e1d8a0fd22ebca2ecc16767168397c2dffd876b3e4e06d55112d7fc3e369b283</citedby><cites>FETCH-LOGICAL-c360t-8e1d8a0fd22ebca2ecc16767168397c2dffd876b3e4e06d55112d7fc3e369b283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2011.12.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27189264$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Jung-Hui</creatorcontrib><creatorcontrib>Huang, Chia-Hong</creatorcontrib><creatorcontrib>Lour, Wen-Shiung</creatorcontrib><creatorcontrib>Chao, Yi-Ting</creatorcontrib><creatorcontrib>Ou-Yang, Jhih-Jhong</creatorcontrib><creatorcontrib>Jhou, Jia-Cing</creatorcontrib><title>High-performance InGaP/GaAs superlattice–emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode</title><title>Thin solid films</title><description>Based on the employments of an InGaP/GaAs superlattice emitter and a thin InGaAs pseudomorphic base structure, the device with excellent transistor action and multiple S-shaped negative-differential-resistance (NDR) switching behavior are achieved. Under normal transistor operation mode, the tunneling electrons could easily transport from InGaP/GaAs superlattice over the n-GaAs emitter layer into the thin InGaAs pseudomorphic base region for reducing the base–emitter turn-on voltage and promoting the current gain. In particular, an interesting multiple S-shaped NDR behavior is observed under inverted operation mode due to the avalanche multiplication and confinement effect for electrons at the interface between superlattice and emitter layer, respectively. As an appropriate voltage source and a load resistor are applied, three stable operation points are obtained.</description><subject>Applied sciences</subject><subject>Avalanche multiplication</subject><subject>Confinement effect</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Emitters (electron)</subject><subject>Exact sciences and technology</subject><subject>Gallium arsenide</subject><subject>Gallium arsenides</subject><subject>Indium gallium arsenides</subject><subject>Materials science</subject><subject>Negative-differential-resistance</subject><subject>Other semiconductors</subject><subject>Physics</subject><subject>Pseudomorphic base</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Specific materials</subject><subject>Superlattice emitter</subject><subject>Superlattices</subject><subject>Transistors</subject><subject>Turn-on voltage</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUGO1DAQRSMEEs3AAdh5g8QmGZfT7SRiNRpBz0gjgQSsLbddnnbLiYPL6RE77sAVOBknwU2PWLKqRf33v6p-Vb0G3gAHeXloMrlGcIAGRMN78aRaQd8NtehaeFqtOF_zWvKBP69eEB045yBEu6p-3fj7fT1jcjGNejLIbqet_nS51VfEaCmLoHP2Bn__-ImjzxkT2_k5Bp1YTnoiTzkm9uDzno1LyH4OyD7XtNczWjbhvc7-iLX1zmHCKXsd6oQn6m8YFdDskdgy2eLspyOmXMBYggsZJzZGiy-rZ04HwleP86L6-uH9l-ub-u7j9vb66q42reS57hFsr7mzQuDOaIHGgOxkB7Jvh84I65ztO7lrcY1c2s0GQNjOmRZbOexE315Ub8--c4rfFqSsRk8GQ9ATxoUUQCs3YsPXJymcpSZFooROzcmPOn1XwNWpEXVQpRF1akSBUKWRwrx5tNdkdHDlfcbTP1B00A9Crovu3VmH5dajx6TIeCzvsj6hycpG_5-UP-hdpxU</recordid><startdate>20121030</startdate><enddate>20121030</enddate><creator>Tsai, Jung-Hui</creator><creator>Huang, Chia-Hong</creator><creator>Lour, Wen-Shiung</creator><creator>Chao, Yi-Ting</creator><creator>Ou-Yang, Jhih-Jhong</creator><creator>Jhou, Jia-Cing</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121030</creationdate><title>High-performance InGaP/GaAs superlattice–emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode</title><author>Tsai, Jung-Hui ; Huang, Chia-Hong ; Lour, Wen-Shiung ; Chao, Yi-Ting ; Ou-Yang, Jhih-Jhong ; Jhou, Jia-Cing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-8e1d8a0fd22ebca2ecc16767168397c2dffd876b3e4e06d55112d7fc3e369b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Avalanche multiplication</topic><topic>Confinement effect</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Emitters (electron)</topic><topic>Exact sciences and technology</topic><topic>Gallium arsenide</topic><topic>Gallium arsenides</topic><topic>Indium gallium arsenides</topic><topic>Materials science</topic><topic>Negative-differential-resistance</topic><topic>Other semiconductors</topic><topic>Physics</topic><topic>Pseudomorphic base</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Specific materials</topic><topic>Superlattice emitter</topic><topic>Superlattices</topic><topic>Transistors</topic><topic>Turn-on voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Jung-Hui</creatorcontrib><creatorcontrib>Huang, Chia-Hong</creatorcontrib><creatorcontrib>Lour, Wen-Shiung</creatorcontrib><creatorcontrib>Chao, Yi-Ting</creatorcontrib><creatorcontrib>Ou-Yang, Jhih-Jhong</creatorcontrib><creatorcontrib>Jhou, Jia-Cing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Jung-Hui</au><au>Huang, Chia-Hong</au><au>Lour, Wen-Shiung</au><au>Chao, Yi-Ting</au><au>Ou-Yang, Jhih-Jhong</au><au>Jhou, Jia-Cing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance InGaP/GaAs superlattice–emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode</atitle><jtitle>Thin solid films</jtitle><date>2012-10-30</date><risdate>2012</risdate><volume>521</volume><spage>168</spage><epage>171</epage><pages>168-171</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>Based on the employments of an InGaP/GaAs superlattice emitter and a thin InGaAs pseudomorphic base structure, the device with excellent transistor action and multiple S-shaped negative-differential-resistance (NDR) switching behavior are achieved. Under normal transistor operation mode, the tunneling electrons could easily transport from InGaP/GaAs superlattice over the n-GaAs emitter layer into the thin InGaAs pseudomorphic base region for reducing the base–emitter turn-on voltage and promoting the current gain. In particular, an interesting multiple S-shaped NDR behavior is observed under inverted operation mode due to the avalanche multiplication and confinement effect for electrons at the interface between superlattice and emitter layer, respectively. As an appropriate voltage source and a load resistor are applied, three stable operation points are obtained.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2011.12.082</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2012-10, Vol.521, p.168-171
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1136525048
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Avalanche multiplication
Confinement effect
Cross-disciplinary physics: materials science
rheology
Electric potential
Electronics
Emitters (electron)
Exact sciences and technology
Gallium arsenide
Gallium arsenides
Indium gallium arsenides
Materials science
Negative-differential-resistance
Other semiconductors
Physics
Pseudomorphic base
Semiconductor devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Specific materials
Superlattice emitter
Superlattices
Transistors
Turn-on voltage
title High-performance InGaP/GaAs superlattice–emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20InGaP/GaAs%20superlattice%E2%80%93emitter%20bipolar%20transistor%20with%20multiple%20S-shaped%20negative-differential-resistance%20switches%20under%20inverted%20operation%20mode&rft.jtitle=Thin%20solid%20films&rft.au=Tsai,%20Jung-Hui&rft.date=2012-10-30&rft.volume=521&rft.spage=168&rft.epage=171&rft.pages=168-171&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2011.12.082&rft_dat=%3Cproquest_cross%3E1136525048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136525048&rft_id=info:pmid/&rft_els_id=S0040609012000132&rfr_iscdi=true