High-performance InGaP/GaAs superlattice–emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode
Based on the employments of an InGaP/GaAs superlattice emitter and a thin InGaAs pseudomorphic base structure, the device with excellent transistor action and multiple S-shaped negative-differential-resistance (NDR) switching behavior are achieved. Under normal transistor operation mode, the tunneli...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2012-10, Vol.521, p.168-171 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | |
container_start_page | 168 |
container_title | Thin solid films |
container_volume | 521 |
creator | Tsai, Jung-Hui Huang, Chia-Hong Lour, Wen-Shiung Chao, Yi-Ting Ou-Yang, Jhih-Jhong Jhou, Jia-Cing |
description | Based on the employments of an InGaP/GaAs superlattice emitter and a thin InGaAs pseudomorphic base structure, the device with excellent transistor action and multiple S-shaped negative-differential-resistance (NDR) switching behavior are achieved. Under normal transistor operation mode, the tunneling electrons could easily transport from InGaP/GaAs superlattice over the n-GaAs emitter layer into the thin InGaAs pseudomorphic base region for reducing the base–emitter turn-on voltage and promoting the current gain. In particular, an interesting multiple S-shaped NDR behavior is observed under inverted operation mode due to the avalanche multiplication and confinement effect for electrons at the interface between superlattice and emitter layer, respectively. As an appropriate voltage source and a load resistor are applied, three stable operation points are obtained. |
doi_str_mv | 10.1016/j.tsf.2011.12.082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136525048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609012000132</els_id><sourcerecordid>1136525048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-8e1d8a0fd22ebca2ecc16767168397c2dffd876b3e4e06d55112d7fc3e369b283</originalsourceid><addsrcrecordid>eNp9kUGO1DAQRSMEEs3AAdh5g8QmGZfT7SRiNRpBz0gjgQSsLbddnnbLiYPL6RE77sAVOBknwU2PWLKqRf33v6p-Vb0G3gAHeXloMrlGcIAGRMN78aRaQd8NtehaeFqtOF_zWvKBP69eEB045yBEu6p-3fj7fT1jcjGNejLIbqet_nS51VfEaCmLoHP2Bn__-ImjzxkT2_k5Bp1YTnoiTzkm9uDzno1LyH4OyD7XtNczWjbhvc7-iLX1zmHCKXsd6oQn6m8YFdDskdgy2eLspyOmXMBYggsZJzZGiy-rZ04HwleP86L6-uH9l-ub-u7j9vb66q42reS57hFsr7mzQuDOaIHGgOxkB7Jvh84I65ztO7lrcY1c2s0GQNjOmRZbOexE315Ub8--c4rfFqSsRk8GQ9ATxoUUQCs3YsPXJymcpSZFooROzcmPOn1XwNWpEXVQpRF1akSBUKWRwrx5tNdkdHDlfcbTP1B00A9Crovu3VmH5dajx6TIeCzvsj6hycpG_5-UP-hdpxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136525048</pqid></control><display><type>article</type><title>High-performance InGaP/GaAs superlattice–emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tsai, Jung-Hui ; Huang, Chia-Hong ; Lour, Wen-Shiung ; Chao, Yi-Ting ; Ou-Yang, Jhih-Jhong ; Jhou, Jia-Cing</creator><creatorcontrib>Tsai, Jung-Hui ; Huang, Chia-Hong ; Lour, Wen-Shiung ; Chao, Yi-Ting ; Ou-Yang, Jhih-Jhong ; Jhou, Jia-Cing</creatorcontrib><description>Based on the employments of an InGaP/GaAs superlattice emitter and a thin InGaAs pseudomorphic base structure, the device with excellent transistor action and multiple S-shaped negative-differential-resistance (NDR) switching behavior are achieved. Under normal transistor operation mode, the tunneling electrons could easily transport from InGaP/GaAs superlattice over the n-GaAs emitter layer into the thin InGaAs pseudomorphic base region for reducing the base–emitter turn-on voltage and promoting the current gain. In particular, an interesting multiple S-shaped NDR behavior is observed under inverted operation mode due to the avalanche multiplication and confinement effect for electrons at the interface between superlattice and emitter layer, respectively. As an appropriate voltage source and a load resistor are applied, three stable operation points are obtained.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2011.12.082</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Avalanche multiplication ; Confinement effect ; Cross-disciplinary physics: materials science; rheology ; Electric potential ; Electronics ; Emitters (electron) ; Exact sciences and technology ; Gallium arsenide ; Gallium arsenides ; Indium gallium arsenides ; Materials science ; Negative-differential-resistance ; Other semiconductors ; Physics ; Pseudomorphic base ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Specific materials ; Superlattice emitter ; Superlattices ; Transistors ; Turn-on voltage</subject><ispartof>Thin solid films, 2012-10, Vol.521, p.168-171</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-8e1d8a0fd22ebca2ecc16767168397c2dffd876b3e4e06d55112d7fc3e369b283</citedby><cites>FETCH-LOGICAL-c360t-8e1d8a0fd22ebca2ecc16767168397c2dffd876b3e4e06d55112d7fc3e369b283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2011.12.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27189264$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Jung-Hui</creatorcontrib><creatorcontrib>Huang, Chia-Hong</creatorcontrib><creatorcontrib>Lour, Wen-Shiung</creatorcontrib><creatorcontrib>Chao, Yi-Ting</creatorcontrib><creatorcontrib>Ou-Yang, Jhih-Jhong</creatorcontrib><creatorcontrib>Jhou, Jia-Cing</creatorcontrib><title>High-performance InGaP/GaAs superlattice–emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode</title><title>Thin solid films</title><description>Based on the employments of an InGaP/GaAs superlattice emitter and a thin InGaAs pseudomorphic base structure, the device with excellent transistor action and multiple S-shaped negative-differential-resistance (NDR) switching behavior are achieved. Under normal transistor operation mode, the tunneling electrons could easily transport from InGaP/GaAs superlattice over the n-GaAs emitter layer into the thin InGaAs pseudomorphic base region for reducing the base–emitter turn-on voltage and promoting the current gain. In particular, an interesting multiple S-shaped NDR behavior is observed under inverted operation mode due to the avalanche multiplication and confinement effect for electrons at the interface between superlattice and emitter layer, respectively. As an appropriate voltage source and a load resistor are applied, three stable operation points are obtained.</description><subject>Applied sciences</subject><subject>Avalanche multiplication</subject><subject>Confinement effect</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Emitters (electron)</subject><subject>Exact sciences and technology</subject><subject>Gallium arsenide</subject><subject>Gallium arsenides</subject><subject>Indium gallium arsenides</subject><subject>Materials science</subject><subject>Negative-differential-resistance</subject><subject>Other semiconductors</subject><subject>Physics</subject><subject>Pseudomorphic base</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Specific materials</subject><subject>Superlattice emitter</subject><subject>Superlattices</subject><subject>Transistors</subject><subject>Turn-on voltage</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUGO1DAQRSMEEs3AAdh5g8QmGZfT7SRiNRpBz0gjgQSsLbddnnbLiYPL6RE77sAVOBknwU2PWLKqRf33v6p-Vb0G3gAHeXloMrlGcIAGRMN78aRaQd8NtehaeFqtOF_zWvKBP69eEB045yBEu6p-3fj7fT1jcjGNejLIbqet_nS51VfEaCmLoHP2Bn__-ImjzxkT2_k5Bp1YTnoiTzkm9uDzno1LyH4OyD7XtNczWjbhvc7-iLX1zmHCKXsd6oQn6m8YFdDskdgy2eLspyOmXMBYggsZJzZGiy-rZ04HwleP86L6-uH9l-ub-u7j9vb66q42reS57hFsr7mzQuDOaIHGgOxkB7Jvh84I65ztO7lrcY1c2s0GQNjOmRZbOexE315Ub8--c4rfFqSsRk8GQ9ATxoUUQCs3YsPXJymcpSZFooROzcmPOn1XwNWpEXVQpRF1akSBUKWRwrx5tNdkdHDlfcbTP1B00A9Crovu3VmH5dajx6TIeCzvsj6hycpG_5-UP-hdpxU</recordid><startdate>20121030</startdate><enddate>20121030</enddate><creator>Tsai, Jung-Hui</creator><creator>Huang, Chia-Hong</creator><creator>Lour, Wen-Shiung</creator><creator>Chao, Yi-Ting</creator><creator>Ou-Yang, Jhih-Jhong</creator><creator>Jhou, Jia-Cing</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121030</creationdate><title>High-performance InGaP/GaAs superlattice–emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode</title><author>Tsai, Jung-Hui ; Huang, Chia-Hong ; Lour, Wen-Shiung ; Chao, Yi-Ting ; Ou-Yang, Jhih-Jhong ; Jhou, Jia-Cing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-8e1d8a0fd22ebca2ecc16767168397c2dffd876b3e4e06d55112d7fc3e369b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Avalanche multiplication</topic><topic>Confinement effect</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Emitters (electron)</topic><topic>Exact sciences and technology</topic><topic>Gallium arsenide</topic><topic>Gallium arsenides</topic><topic>Indium gallium arsenides</topic><topic>Materials science</topic><topic>Negative-differential-resistance</topic><topic>Other semiconductors</topic><topic>Physics</topic><topic>Pseudomorphic base</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Specific materials</topic><topic>Superlattice emitter</topic><topic>Superlattices</topic><topic>Transistors</topic><topic>Turn-on voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Jung-Hui</creatorcontrib><creatorcontrib>Huang, Chia-Hong</creatorcontrib><creatorcontrib>Lour, Wen-Shiung</creatorcontrib><creatorcontrib>Chao, Yi-Ting</creatorcontrib><creatorcontrib>Ou-Yang, Jhih-Jhong</creatorcontrib><creatorcontrib>Jhou, Jia-Cing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Jung-Hui</au><au>Huang, Chia-Hong</au><au>Lour, Wen-Shiung</au><au>Chao, Yi-Ting</au><au>Ou-Yang, Jhih-Jhong</au><au>Jhou, Jia-Cing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance InGaP/GaAs superlattice–emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode</atitle><jtitle>Thin solid films</jtitle><date>2012-10-30</date><risdate>2012</risdate><volume>521</volume><spage>168</spage><epage>171</epage><pages>168-171</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>Based on the employments of an InGaP/GaAs superlattice emitter and a thin InGaAs pseudomorphic base structure, the device with excellent transistor action and multiple S-shaped negative-differential-resistance (NDR) switching behavior are achieved. Under normal transistor operation mode, the tunneling electrons could easily transport from InGaP/GaAs superlattice over the n-GaAs emitter layer into the thin InGaAs pseudomorphic base region for reducing the base–emitter turn-on voltage and promoting the current gain. In particular, an interesting multiple S-shaped NDR behavior is observed under inverted operation mode due to the avalanche multiplication and confinement effect for electrons at the interface between superlattice and emitter layer, respectively. As an appropriate voltage source and a load resistor are applied, three stable operation points are obtained.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2011.12.082</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2012-10, Vol.521, p.168-171 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136525048 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Avalanche multiplication Confinement effect Cross-disciplinary physics: materials science rheology Electric potential Electronics Emitters (electron) Exact sciences and technology Gallium arsenide Gallium arsenides Indium gallium arsenides Materials science Negative-differential-resistance Other semiconductors Physics Pseudomorphic base Semiconductor devices Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Specific materials Superlattice emitter Superlattices Transistors Turn-on voltage |
title | High-performance InGaP/GaAs superlattice–emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20InGaP/GaAs%20superlattice%E2%80%93emitter%20bipolar%20transistor%20with%20multiple%20S-shaped%20negative-differential-resistance%20switches%20under%20inverted%20operation%20mode&rft.jtitle=Thin%20solid%20films&rft.au=Tsai,%20Jung-Hui&rft.date=2012-10-30&rft.volume=521&rft.spage=168&rft.epage=171&rft.pages=168-171&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2011.12.082&rft_dat=%3Cproquest_cross%3E1136525048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136525048&rft_id=info:pmid/&rft_els_id=S0040609012000132&rfr_iscdi=true |