Hierarchy paths in the Hatcher-Thurston complex
Inspired by works of Masur-Minsky and Mahan Mj, we observe that the Hatcher-Thurston complex of a surface F is an interpolating complex between the pants complex and the curve complex, then we give a hierarchical structure for the Hatcher-Thurston complex. By this hierarchical structure, we show a d...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2012-07, Vol.55 (7), p.1479-1486 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1486 |
---|---|
container_issue | 7 |
container_start_page | 1479 |
container_title | Science China. Mathematics |
container_volume | 55 |
creator | Ma, JiMing |
description | Inspired by works of Masur-Minsky and Mahan Mj, we observe that the Hatcher-Thurston complex of a surface F is an interpolating complex between the pants complex and the curve complex, then we give a hierarchical structure for the Hatcher-Thurston complex. By this hierarchical structure, we show a distance formula in the Hatcher-Thurston complex related to subsurfaces of positive genera. As a corollary, we show that the Hatcher-Thurston complex has one end for surface with genus at least three, the proof runs the same line as a result of Masur-Schleimer, the key tool is the distance formula. |
doi_str_mv | 10.1007/s11425-012-4362-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136475956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42432237</cqvip_id><sourcerecordid>1671568881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a9cccf668519684b8228a4de2fee6164367f8b540d4d42ab2a52c70ff21b38453</originalsourceid><addsrcrecordid>eNqFUD1PwzAQtRBIVNAfwBY2FlP7_JkRVUCRKrGU2XJcp0mVJqmdSPTf4yoVI9xwd8N79-49hB4oeaaEqEWklIPAhALmTAKWV2hGtcxxanCddqk4VqDZLZrHuCepWE64YjO0WNU-2OCqU9bboYpZ3WZD5bOVHVzlA95UY4hD12auO_SN_75HN6Vtop9f5h36envdLFd4_fn-sXxZY8c0GbDNnXOllFrQXGpeaABt-dZD6b2kMn2pSl0ITrZ8y8EWYAU4RcoSaME0F-wOPU13-9AdRx8Hc6ij801jW9-N0SRLVEitNf0fSpnkSuRCJiidoC50MQZfmj7UBxtOhhJzjtJMUZoUpTlHac4cmDgxYdudD2bfjaFN5v8kPV6Eqq7dHRPvV4kDZwBMsR9ekn9K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136475956</pqid></control><display><type>article</type><title>Hierarchy paths in the Hatcher-Thurston complex</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ma, JiMing</creator><creatorcontrib>Ma, JiMing</creatorcontrib><description>Inspired by works of Masur-Minsky and Mahan Mj, we observe that the Hatcher-Thurston complex of a surface F is an interpolating complex between the pants complex and the curve complex, then we give a hierarchical structure for the Hatcher-Thurston complex. By this hierarchical structure, we show a distance formula in the Hatcher-Thurston complex related to subsurfaces of positive genera. As a corollary, we show that the Hatcher-Thurston complex has one end for surface with genus at least three, the proof runs the same line as a result of Masur-Schleimer, the key tool is the distance formula.</description><identifier>ISSN: 1674-7283</identifier><identifier>ISSN: 1006-9283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-012-4362-6</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Applications of Mathematics ; Astronomy ; China ; Hierarchies ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Proving ; Series (mathematics) ; 复杂曲面 ; 层次结构 ; 距离公式 ; 路径</subject><ispartof>Science China. Mathematics, 2012-07, Vol.55 (7), p.1479-1486</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-a9cccf668519684b8228a4de2fee6164367f8b540d4d42ab2a52c70ff21b38453</citedby><cites>FETCH-LOGICAL-c380t-a9cccf668519684b8228a4de2fee6164367f8b540d4d42ab2a52c70ff21b38453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-012-4362-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-012-4362-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ma, JiMing</creatorcontrib><title>Hierarchy paths in the Hatcher-Thurston complex</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>Inspired by works of Masur-Minsky and Mahan Mj, we observe that the Hatcher-Thurston complex of a surface F is an interpolating complex between the pants complex and the curve complex, then we give a hierarchical structure for the Hatcher-Thurston complex. By this hierarchical structure, we show a distance formula in the Hatcher-Thurston complex related to subsurfaces of positive genera. As a corollary, we show that the Hatcher-Thurston complex has one end for surface with genus at least three, the proof runs the same line as a result of Masur-Schleimer, the key tool is the distance formula.</description><subject>Applications of Mathematics</subject><subject>Astronomy</subject><subject>China</subject><subject>Hierarchies</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Proving</subject><subject>Series (mathematics)</subject><subject>复杂曲面</subject><subject>层次结构</subject><subject>距离公式</subject><subject>路径</subject><issn>1674-7283</issn><issn>1006-9283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFUD1PwzAQtRBIVNAfwBY2FlP7_JkRVUCRKrGU2XJcp0mVJqmdSPTf4yoVI9xwd8N79-49hB4oeaaEqEWklIPAhALmTAKWV2hGtcxxanCddqk4VqDZLZrHuCepWE64YjO0WNU-2OCqU9bboYpZ3WZD5bOVHVzlA95UY4hD12auO_SN_75HN6Vtop9f5h36envdLFd4_fn-sXxZY8c0GbDNnXOllFrQXGpeaABt-dZD6b2kMn2pSl0ITrZ8y8EWYAU4RcoSaME0F-wOPU13-9AdRx8Hc6ij801jW9-N0SRLVEitNf0fSpnkSuRCJiidoC50MQZfmj7UBxtOhhJzjtJMUZoUpTlHac4cmDgxYdudD2bfjaFN5v8kPV6Eqq7dHRPvV4kDZwBMsR9ekn9K</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Ma, JiMing</creator><general>SP Science China Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120701</creationdate><title>Hierarchy paths in the Hatcher-Thurston complex</title><author>Ma, JiMing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a9cccf668519684b8228a4de2fee6164367f8b540d4d42ab2a52c70ff21b38453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applications of Mathematics</topic><topic>Astronomy</topic><topic>China</topic><topic>Hierarchies</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Proving</topic><topic>Series (mathematics)</topic><topic>复杂曲面</topic><topic>层次结构</topic><topic>距离公式</topic><topic>路径</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, JiMing</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, JiMing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchy paths in the Hatcher-Thurston complex</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>55</volume><issue>7</issue><spage>1479</spage><epage>1486</epage><pages>1479-1486</pages><issn>1674-7283</issn><issn>1006-9283</issn><eissn>1869-1862</eissn><abstract>Inspired by works of Masur-Minsky and Mahan Mj, we observe that the Hatcher-Thurston complex of a surface F is an interpolating complex between the pants complex and the curve complex, then we give a hierarchical structure for the Hatcher-Thurston complex. By this hierarchical structure, we show a distance formula in the Hatcher-Thurston complex related to subsurfaces of positive genera. As a corollary, we show that the Hatcher-Thurston complex has one end for surface with genus at least three, the proof runs the same line as a result of Masur-Schleimer, the key tool is the distance formula.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11425-012-4362-6</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2012-07, Vol.55 (7), p.1479-1486 |
issn | 1674-7283 1006-9283 1869-1862 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136475956 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Astronomy China Hierarchies Mathematical analysis Mathematics Mathematics and Statistics Proving Series (mathematics) 复杂曲面 层次结构 距离公式 路径 |
title | Hierarchy paths in the Hatcher-Thurston complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchy%20paths%20in%20the%20Hatcher-Thurston%20complex&rft.jtitle=Science%20China.%20Mathematics&rft.au=Ma,%20JiMing&rft.date=2012-07-01&rft.volume=55&rft.issue=7&rft.spage=1479&rft.epage=1486&rft.pages=1479-1486&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-012-4362-6&rft_dat=%3Cproquest_cross%3E1671568881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136475956&rft_id=info:pmid/&rft_cqvip_id=42432237&rfr_iscdi=true |