An improved surface-plasmonic nanobeam cavity for higher Q and smaller V

We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal (SP3C) nanobeam cavity. The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain (3D-FDTD) method. The results show that a Q-factor of 2076 and a modal volume V of 0.16(λ/2n)^3 c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese science bulletin 2012-09, Vol.57 (25), p.3371-3374
Hauptverfasser: Yu, Ping, Qi, Biao, Xu, Chao, Hu, Ting, Jiang, XiaoQing, Wang, MingHua, Yang, JianYi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3374
container_issue 25
container_start_page 3371
container_title Chinese science bulletin
container_volume 57
creator Yu, Ping
Qi, Biao
Xu, Chao
Hu, Ting
Jiang, XiaoQing
Wang, MingHua
Yang, JianYi
description We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal (SP3C) nanobeam cavity. The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain (3D-FDTD) method. The results show that a Q-factor of 2076 and a modal volume V of 0.16(λ/2n)^3 can be achieved in a 50 nm silica-gap hybrid SP3C nanobeam cavity when it operates at telecommunications wavelengths and at room temperature. V can be further reduced to 0.02(λ/2n)^3 when the silica thickness decreases to 10 nm, which leads to a Q/V ratio that is 11 times that of the corresponding plasmonic-photonic nanobeam cavity (without silica). The ultrahigh Q/V ratio originates from the low-loss nature and deep sub-wavelength confinement of the hybrid plasmonic waveguide, as well as the mode gap effect used to reduce the radiation loss. The proposed structure is fully compatible with semiconductor fabrication techniques and could lead to a wide range of applications.
doi_str_mv 10.1007/s11434-012-5350-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136439558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42817611</cqvip_id><sourcerecordid>1136439558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-deeb2d780c58ea4f57268b8eafee1dda70be2c50ae108ba6a9fb1f0c1526afc93</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVoIK7TH9BTt7delGq00q58DKZpCoYS8nEVs9qRvWZXciQ7kH9fhQ095jIf8L7DOw9jX0FcgRDtzwygasUFSK5rLbg-YwswDfCVVvCpzEIAb3RtLtjnnPdlq6GVC3Z7HaphOqT4Qn2VT8mjI34YMU8xDK4KGGJHOFUOX4bja-VjqnbDdkepuqswFMuE41i2p0t27nHM9OW9L9njza-H9S3f_P39Z3294U6BOvKeqJN9a4TThlB53crGdGX0RND32IqOpNMCCYTpsMGV78ALB1o26N2qXrIf892S-flE-WinITsaRwwUT9kC1I2qV1qbIoVZ6lLMOZG3hzRMmF4tCPtGzc7UbKFm36iVsmRy9uSiDVtKdh9PKZSPPjR9m00eo8VtGrJ9vJcCVMEspTGqKL6_R9nFsH0ul_9nUdJA25TY_wAvmIR7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136439558</pqid></control><display><type>article</type><title>An improved surface-plasmonic nanobeam cavity for higher Q and smaller V</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yu, Ping ; Qi, Biao ; Xu, Chao ; Hu, Ting ; Jiang, XiaoQing ; Wang, MingHua ; Yang, JianYi</creator><creatorcontrib>Yu, Ping ; Qi, Biao ; Xu, Chao ; Hu, Ting ; Jiang, XiaoQing ; Wang, MingHua ; Yang, JianYi</creatorcontrib><description>We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal (SP3C) nanobeam cavity. The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain (3D-FDTD) method. The results show that a Q-factor of 2076 and a modal volume V of 0.16(λ/2n)^3 can be achieved in a 50 nm silica-gap hybrid SP3C nanobeam cavity when it operates at telecommunications wavelengths and at room temperature. V can be further reduced to 0.02(λ/2n)^3 when the silica thickness decreases to 10 nm, which leads to a Q/V ratio that is 11 times that of the corresponding plasmonic-photonic nanobeam cavity (without silica). The ultrahigh Q/V ratio originates from the low-loss nature and deep sub-wavelength confinement of the hybrid plasmonic waveguide, as well as the mode gap effect used to reduce the radiation loss. The proposed structure is fully compatible with semiconductor fabrication techniques and could lead to a wide range of applications.</description><identifier>ISSN: 1001-6538</identifier><identifier>EISSN: 1861-9541</identifier><identifier>DOI: 10.1007/s11434-012-5350-5</identifier><language>eng</language><publisher>Heidelberg: Springer-Verlag</publisher><subject>Chemistry/Food Science ; Earth Sciences ; Engineering ; Holes ; Humanities and Social Sciences ; Letter ; Life Sciences ; Mathematical models ; multidisciplinary ; Nanocomposites ; Nanomaterials ; Nanostructure ; Physics ; Plasmonics ; Science ; Science (multidisciplinary) ; Semiconductors ; silica ; Silicon dioxide ; telecommunications ; temperature ; wavelengths ; 半导体制造技术 ; 有限差分时域法 ; 梁 ; 纳米 ; 表面等离子体 ; 表面等离激元 ; 谐振腔 ; 高Q值</subject><ispartof>Chinese science bulletin, 2012-09, Vol.57 (25), p.3371-3374</ispartof><rights>The Author(s) 2012</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-deeb2d780c58ea4f57268b8eafee1dda70be2c50ae108ba6a9fb1f0c1526afc93</citedby><cites>FETCH-LOGICAL-c414t-deeb2d780c58ea4f57268b8eafee1dda70be2c50ae108ba6a9fb1f0c1526afc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86894X/86894X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yu, Ping</creatorcontrib><creatorcontrib>Qi, Biao</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Hu, Ting</creatorcontrib><creatorcontrib>Jiang, XiaoQing</creatorcontrib><creatorcontrib>Wang, MingHua</creatorcontrib><creatorcontrib>Yang, JianYi</creatorcontrib><title>An improved surface-plasmonic nanobeam cavity for higher Q and smaller V</title><title>Chinese science bulletin</title><addtitle>Chin. Sci. Bull</addtitle><addtitle>Chinese Science Bulletin</addtitle><description>We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal (SP3C) nanobeam cavity. The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain (3D-FDTD) method. The results show that a Q-factor of 2076 and a modal volume V of 0.16(λ/2n)^3 can be achieved in a 50 nm silica-gap hybrid SP3C nanobeam cavity when it operates at telecommunications wavelengths and at room temperature. V can be further reduced to 0.02(λ/2n)^3 when the silica thickness decreases to 10 nm, which leads to a Q/V ratio that is 11 times that of the corresponding plasmonic-photonic nanobeam cavity (without silica). The ultrahigh Q/V ratio originates from the low-loss nature and deep sub-wavelength confinement of the hybrid plasmonic waveguide, as well as the mode gap effect used to reduce the radiation loss. The proposed structure is fully compatible with semiconductor fabrication techniques and could lead to a wide range of applications.</description><subject>Chemistry/Food Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Holes</subject><subject>Humanities and Social Sciences</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>silica</subject><subject>Silicon dioxide</subject><subject>telecommunications</subject><subject>temperature</subject><subject>wavelengths</subject><subject>半导体制造技术</subject><subject>有限差分时域法</subject><subject>梁</subject><subject>纳米</subject><subject>表面等离子体</subject><subject>表面等离激元</subject><subject>谐振腔</subject><subject>高Q值</subject><issn>1001-6538</issn><issn>1861-9541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1rGzEQhkVoIK7TH9BTt7delGq00q58DKZpCoYS8nEVs9qRvWZXciQ7kH9fhQ095jIf8L7DOw9jX0FcgRDtzwygasUFSK5rLbg-YwswDfCVVvCpzEIAb3RtLtjnnPdlq6GVC3Z7HaphOqT4Qn2VT8mjI34YMU8xDK4KGGJHOFUOX4bja-VjqnbDdkepuqswFMuE41i2p0t27nHM9OW9L9njza-H9S3f_P39Z3294U6BOvKeqJN9a4TThlB53crGdGX0RND32IqOpNMCCYTpsMGV78ALB1o26N2qXrIf892S-flE-WinITsaRwwUT9kC1I2qV1qbIoVZ6lLMOZG3hzRMmF4tCPtGzc7UbKFm36iVsmRy9uSiDVtKdh9PKZSPPjR9m00eo8VtGrJ9vJcCVMEspTGqKL6_R9nFsH0ul_9nUdJA25TY_wAvmIR7</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Yu, Ping</creator><creator>Qi, Biao</creator><creator>Xu, Chao</creator><creator>Hu, Ting</creator><creator>Jiang, XiaoQing</creator><creator>Wang, MingHua</creator><creator>Yang, JianYi</creator><general>Springer-Verlag</general><general>SP Science China Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>FBQ</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120901</creationdate><title>An improved surface-plasmonic nanobeam cavity for higher Q and smaller V</title><author>Yu, Ping ; Qi, Biao ; Xu, Chao ; Hu, Ting ; Jiang, XiaoQing ; Wang, MingHua ; Yang, JianYi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-deeb2d780c58ea4f57268b8eafee1dda70be2c50ae108ba6a9fb1f0c1526afc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry/Food Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Holes</topic><topic>Humanities and Social Sciences</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>silica</topic><topic>Silicon dioxide</topic><topic>telecommunications</topic><topic>temperature</topic><topic>wavelengths</topic><topic>半导体制造技术</topic><topic>有限差分时域法</topic><topic>梁</topic><topic>纳米</topic><topic>表面等离子体</topic><topic>表面等离激元</topic><topic>谐振腔</topic><topic>高Q值</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ping</creatorcontrib><creatorcontrib>Qi, Biao</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Hu, Ting</creatorcontrib><creatorcontrib>Jiang, XiaoQing</creatorcontrib><creatorcontrib>Wang, MingHua</creatorcontrib><creatorcontrib>Yang, JianYi</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>AGRIS</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Chinese science bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ping</au><au>Qi, Biao</au><au>Xu, Chao</au><au>Hu, Ting</au><au>Jiang, XiaoQing</au><au>Wang, MingHua</au><au>Yang, JianYi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved surface-plasmonic nanobeam cavity for higher Q and smaller V</atitle><jtitle>Chinese science bulletin</jtitle><stitle>Chin. Sci. Bull</stitle><addtitle>Chinese Science Bulletin</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>57</volume><issue>25</issue><spage>3371</spage><epage>3374</epage><pages>3371-3374</pages><issn>1001-6538</issn><eissn>1861-9541</eissn><abstract>We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal (SP3C) nanobeam cavity. The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain (3D-FDTD) method. The results show that a Q-factor of 2076 and a modal volume V of 0.16(λ/2n)^3 can be achieved in a 50 nm silica-gap hybrid SP3C nanobeam cavity when it operates at telecommunications wavelengths and at room temperature. V can be further reduced to 0.02(λ/2n)^3 when the silica thickness decreases to 10 nm, which leads to a Q/V ratio that is 11 times that of the corresponding plasmonic-photonic nanobeam cavity (without silica). The ultrahigh Q/V ratio originates from the low-loss nature and deep sub-wavelength confinement of the hybrid plasmonic waveguide, as well as the mode gap effect used to reduce the radiation loss. The proposed structure is fully compatible with semiconductor fabrication techniques and could lead to a wide range of applications.</abstract><cop>Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11434-012-5350-5</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1001-6538
ispartof Chinese science bulletin, 2012-09, Vol.57 (25), p.3371-3374
issn 1001-6538
1861-9541
language eng
recordid cdi_proquest_miscellaneous_1136439558
source EZB-FREE-00999 freely available EZB journals
subjects Chemistry/Food Science
Earth Sciences
Engineering
Holes
Humanities and Social Sciences
Letter
Life Sciences
Mathematical models
multidisciplinary
Nanocomposites
Nanomaterials
Nanostructure
Physics
Plasmonics
Science
Science (multidisciplinary)
Semiconductors
silica
Silicon dioxide
telecommunications
temperature
wavelengths
半导体制造技术
有限差分时域法

纳米
表面等离子体
表面等离激元
谐振腔
高Q值
title An improved surface-plasmonic nanobeam cavity for higher Q and smaller V
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20surface-plasmonic%20nanobeam%20cavity%20for%20higher%20Q%20and%20smaller%20V&rft.jtitle=Chinese%20science%20bulletin&rft.au=Yu,%20Ping&rft.date=2012-09-01&rft.volume=57&rft.issue=25&rft.spage=3371&rft.epage=3374&rft.pages=3371-3374&rft.issn=1001-6538&rft.eissn=1861-9541&rft_id=info:doi/10.1007/s11434-012-5350-5&rft_dat=%3Cproquest_cross%3E1136439558%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136439558&rft_id=info:pmid/&rft_cqvip_id=42817611&rfr_iscdi=true