An improved surface-plasmonic nanobeam cavity for higher Q and smaller V
We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal (SP3C) nanobeam cavity. The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain (3D-FDTD) method. The results show that a Q-factor of 2076 and a modal volume V of 0.16(λ/2n)^3 c...
Gespeichert in:
Veröffentlicht in: | Chinese science bulletin 2012-09, Vol.57 (25), p.3371-3374 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3374 |
---|---|
container_issue | 25 |
container_start_page | 3371 |
container_title | Chinese science bulletin |
container_volume | 57 |
creator | Yu, Ping Qi, Biao Xu, Chao Hu, Ting Jiang, XiaoQing Wang, MingHua Yang, JianYi |
description | We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal (SP3C) nanobeam cavity. The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain (3D-FDTD) method. The results show that a Q-factor of 2076 and a modal volume V of 0.16(λ/2n)^3 can be achieved in a 50 nm silica-gap hybrid SP3C nanobeam cavity when it operates at telecommunications wavelengths and at room temperature. V can be further reduced to 0.02(λ/2n)^3 when the silica thickness decreases to 10 nm, which leads to a Q/V ratio that is 11 times that of the corresponding plasmonic-photonic nanobeam cavity (without silica). The ultrahigh Q/V ratio originates from the low-loss nature and deep sub-wavelength confinement of the hybrid plasmonic waveguide, as well as the mode gap effect used to reduce the radiation loss. The proposed structure is fully compatible with semiconductor fabrication techniques and could lead to a wide range of applications. |
doi_str_mv | 10.1007/s11434-012-5350-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136439558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42817611</cqvip_id><sourcerecordid>1136439558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-deeb2d780c58ea4f57268b8eafee1dda70be2c50ae108ba6a9fb1f0c1526afc93</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVoIK7TH9BTt7delGq00q58DKZpCoYS8nEVs9qRvWZXciQ7kH9fhQ095jIf8L7DOw9jX0FcgRDtzwygasUFSK5rLbg-YwswDfCVVvCpzEIAb3RtLtjnnPdlq6GVC3Z7HaphOqT4Qn2VT8mjI34YMU8xDK4KGGJHOFUOX4bja-VjqnbDdkepuqswFMuE41i2p0t27nHM9OW9L9njza-H9S3f_P39Z3294U6BOvKeqJN9a4TThlB53crGdGX0RND32IqOpNMCCYTpsMGV78ALB1o26N2qXrIf892S-flE-WinITsaRwwUT9kC1I2qV1qbIoVZ6lLMOZG3hzRMmF4tCPtGzc7UbKFm36iVsmRy9uSiDVtKdh9PKZSPPjR9m00eo8VtGrJ9vJcCVMEspTGqKL6_R9nFsH0ul_9nUdJA25TY_wAvmIR7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136439558</pqid></control><display><type>article</type><title>An improved surface-plasmonic nanobeam cavity for higher Q and smaller V</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yu, Ping ; Qi, Biao ; Xu, Chao ; Hu, Ting ; Jiang, XiaoQing ; Wang, MingHua ; Yang, JianYi</creator><creatorcontrib>Yu, Ping ; Qi, Biao ; Xu, Chao ; Hu, Ting ; Jiang, XiaoQing ; Wang, MingHua ; Yang, JianYi</creatorcontrib><description>We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal (SP3C) nanobeam cavity. The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain (3D-FDTD) method. The results show that a Q-factor of 2076 and a modal volume V of 0.16(λ/2n)^3 can be achieved in a 50 nm silica-gap hybrid SP3C nanobeam cavity when it operates at telecommunications wavelengths and at room temperature. V can be further reduced to 0.02(λ/2n)^3 when the silica thickness decreases to 10 nm, which leads to a Q/V ratio that is 11 times that of the corresponding plasmonic-photonic nanobeam cavity (without silica). The ultrahigh Q/V ratio originates from the low-loss nature and deep sub-wavelength confinement of the hybrid plasmonic waveguide, as well as the mode gap effect used to reduce the radiation loss. The proposed structure is fully compatible with semiconductor fabrication techniques and could lead to a wide range of applications.</description><identifier>ISSN: 1001-6538</identifier><identifier>EISSN: 1861-9541</identifier><identifier>DOI: 10.1007/s11434-012-5350-5</identifier><language>eng</language><publisher>Heidelberg: Springer-Verlag</publisher><subject>Chemistry/Food Science ; Earth Sciences ; Engineering ; Holes ; Humanities and Social Sciences ; Letter ; Life Sciences ; Mathematical models ; multidisciplinary ; Nanocomposites ; Nanomaterials ; Nanostructure ; Physics ; Plasmonics ; Science ; Science (multidisciplinary) ; Semiconductors ; silica ; Silicon dioxide ; telecommunications ; temperature ; wavelengths ; 半导体制造技术 ; 有限差分时域法 ; 梁 ; 纳米 ; 表面等离子体 ; 表面等离激元 ; 谐振腔 ; 高Q值</subject><ispartof>Chinese science bulletin, 2012-09, Vol.57 (25), p.3371-3374</ispartof><rights>The Author(s) 2012</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-deeb2d780c58ea4f57268b8eafee1dda70be2c50ae108ba6a9fb1f0c1526afc93</citedby><cites>FETCH-LOGICAL-c414t-deeb2d780c58ea4f57268b8eafee1dda70be2c50ae108ba6a9fb1f0c1526afc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86894X/86894X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yu, Ping</creatorcontrib><creatorcontrib>Qi, Biao</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Hu, Ting</creatorcontrib><creatorcontrib>Jiang, XiaoQing</creatorcontrib><creatorcontrib>Wang, MingHua</creatorcontrib><creatorcontrib>Yang, JianYi</creatorcontrib><title>An improved surface-plasmonic nanobeam cavity for higher Q and smaller V</title><title>Chinese science bulletin</title><addtitle>Chin. Sci. Bull</addtitle><addtitle>Chinese Science Bulletin</addtitle><description>We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal (SP3C) nanobeam cavity. The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain (3D-FDTD) method. The results show that a Q-factor of 2076 and a modal volume V of 0.16(λ/2n)^3 can be achieved in a 50 nm silica-gap hybrid SP3C nanobeam cavity when it operates at telecommunications wavelengths and at room temperature. V can be further reduced to 0.02(λ/2n)^3 when the silica thickness decreases to 10 nm, which leads to a Q/V ratio that is 11 times that of the corresponding plasmonic-photonic nanobeam cavity (without silica). The ultrahigh Q/V ratio originates from the low-loss nature and deep sub-wavelength confinement of the hybrid plasmonic waveguide, as well as the mode gap effect used to reduce the radiation loss. The proposed structure is fully compatible with semiconductor fabrication techniques and could lead to a wide range of applications.</description><subject>Chemistry/Food Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Holes</subject><subject>Humanities and Social Sciences</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>silica</subject><subject>Silicon dioxide</subject><subject>telecommunications</subject><subject>temperature</subject><subject>wavelengths</subject><subject>半导体制造技术</subject><subject>有限差分时域法</subject><subject>梁</subject><subject>纳米</subject><subject>表面等离子体</subject><subject>表面等离激元</subject><subject>谐振腔</subject><subject>高Q值</subject><issn>1001-6538</issn><issn>1861-9541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1rGzEQhkVoIK7TH9BTt7delGq00q58DKZpCoYS8nEVs9qRvWZXciQ7kH9fhQ095jIf8L7DOw9jX0FcgRDtzwygasUFSK5rLbg-YwswDfCVVvCpzEIAb3RtLtjnnPdlq6GVC3Z7HaphOqT4Qn2VT8mjI34YMU8xDK4KGGJHOFUOX4bja-VjqnbDdkepuqswFMuE41i2p0t27nHM9OW9L9njza-H9S3f_P39Z3294U6BOvKeqJN9a4TThlB53crGdGX0RND32IqOpNMCCYTpsMGV78ALB1o26N2qXrIf892S-flE-WinITsaRwwUT9kC1I2qV1qbIoVZ6lLMOZG3hzRMmF4tCPtGzc7UbKFm36iVsmRy9uSiDVtKdh9PKZSPPjR9m00eo8VtGrJ9vJcCVMEspTGqKL6_R9nFsH0ul_9nUdJA25TY_wAvmIR7</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Yu, Ping</creator><creator>Qi, Biao</creator><creator>Xu, Chao</creator><creator>Hu, Ting</creator><creator>Jiang, XiaoQing</creator><creator>Wang, MingHua</creator><creator>Yang, JianYi</creator><general>Springer-Verlag</general><general>SP Science China Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>FBQ</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120901</creationdate><title>An improved surface-plasmonic nanobeam cavity for higher Q and smaller V</title><author>Yu, Ping ; Qi, Biao ; Xu, Chao ; Hu, Ting ; Jiang, XiaoQing ; Wang, MingHua ; Yang, JianYi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-deeb2d780c58ea4f57268b8eafee1dda70be2c50ae108ba6a9fb1f0c1526afc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry/Food Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Holes</topic><topic>Humanities and Social Sciences</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>silica</topic><topic>Silicon dioxide</topic><topic>telecommunications</topic><topic>temperature</topic><topic>wavelengths</topic><topic>半导体制造技术</topic><topic>有限差分时域法</topic><topic>梁</topic><topic>纳米</topic><topic>表面等离子体</topic><topic>表面等离激元</topic><topic>谐振腔</topic><topic>高Q值</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ping</creatorcontrib><creatorcontrib>Qi, Biao</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Hu, Ting</creatorcontrib><creatorcontrib>Jiang, XiaoQing</creatorcontrib><creatorcontrib>Wang, MingHua</creatorcontrib><creatorcontrib>Yang, JianYi</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>AGRIS</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Chinese science bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ping</au><au>Qi, Biao</au><au>Xu, Chao</au><au>Hu, Ting</au><au>Jiang, XiaoQing</au><au>Wang, MingHua</au><au>Yang, JianYi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved surface-plasmonic nanobeam cavity for higher Q and smaller V</atitle><jtitle>Chinese science bulletin</jtitle><stitle>Chin. Sci. Bull</stitle><addtitle>Chinese Science Bulletin</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>57</volume><issue>25</issue><spage>3371</spage><epage>3374</epage><pages>3371-3374</pages><issn>1001-6538</issn><eissn>1861-9541</eissn><abstract>We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal (SP3C) nanobeam cavity. The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain (3D-FDTD) method. The results show that a Q-factor of 2076 and a modal volume V of 0.16(λ/2n)^3 can be achieved in a 50 nm silica-gap hybrid SP3C nanobeam cavity when it operates at telecommunications wavelengths and at room temperature. V can be further reduced to 0.02(λ/2n)^3 when the silica thickness decreases to 10 nm, which leads to a Q/V ratio that is 11 times that of the corresponding plasmonic-photonic nanobeam cavity (without silica). The ultrahigh Q/V ratio originates from the low-loss nature and deep sub-wavelength confinement of the hybrid plasmonic waveguide, as well as the mode gap effect used to reduce the radiation loss. The proposed structure is fully compatible with semiconductor fabrication techniques and could lead to a wide range of applications.</abstract><cop>Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11434-012-5350-5</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-6538 |
ispartof | Chinese science bulletin, 2012-09, Vol.57 (25), p.3371-3374 |
issn | 1001-6538 1861-9541 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136439558 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Chemistry/Food Science Earth Sciences Engineering Holes Humanities and Social Sciences Letter Life Sciences Mathematical models multidisciplinary Nanocomposites Nanomaterials Nanostructure Physics Plasmonics Science Science (multidisciplinary) Semiconductors silica Silicon dioxide telecommunications temperature wavelengths 半导体制造技术 有限差分时域法 梁 纳米 表面等离子体 表面等离激元 谐振腔 高Q值 |
title | An improved surface-plasmonic nanobeam cavity for higher Q and smaller V |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20surface-plasmonic%20nanobeam%20cavity%20for%20higher%20Q%20and%20smaller%20V&rft.jtitle=Chinese%20science%20bulletin&rft.au=Yu,%20Ping&rft.date=2012-09-01&rft.volume=57&rft.issue=25&rft.spage=3371&rft.epage=3374&rft.pages=3371-3374&rft.issn=1001-6538&rft.eissn=1861-9541&rft_id=info:doi/10.1007/s11434-012-5350-5&rft_dat=%3Cproquest_cross%3E1136439558%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136439558&rft_id=info:pmid/&rft_cqvip_id=42817611&rfr_iscdi=true |