Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments
RGB-D cameras provide both color images and per-pixel depth estimates. The richness of this data and the recent development of low-cost sensors have combined to present an attractive opportunity for mobile robotics research. In this paper, we describe a system for visual odometry and mapping using a...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2012-09, Vol.31 (11), p.1320-1343 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1343 |
---|---|
container_issue | 11 |
container_start_page | 1320 |
container_title | The International journal of robotics research |
container_volume | 31 |
creator | Bachrach, Abraham Prentice, Samuel He, Ruijie Henry, Peter Huang, Albert S Krainin, Michael Maturana, Daniel Fox, Dieter Roy, Nicholas |
description | RGB-D cameras provide both color images and per-pixel depth estimates. The richness of this data and the recent development of low-cost sensors have combined to present an attractive opportunity for mobile robotics research. In this paper, we describe a system for visual odometry and mapping using an RGB-D camera, and its application to autonomous flight. By leveraging results from recent state-of-the-art algorithms and hardware, our system enables 3D flight in cluttered environments using only onboard sensor data. All computation and sensing required for local position control are performed onboard the vehicle, reducing the dependence on an unreliable wireless link to a ground station. However, even with accurate 3D sensing and position estimation, some parts of the environment have more perceptual structure than others, leading to state estimates that vary in accuracy across the environment. If the vehicle plans a path without regard to how well it can localize itself along that path, it runs the risk of becoming lost or worse. We show how the belief roadmap algorithm prentice2009belief, a belief space extension of the probabilistic roadmap algorithm, can be used to plan vehicle trajectories that incorporate the sensing model of the RGB-D camera. We evaluate the effectiveness of our system for controlling a quadrotor micro air vehicle, demonstrate its use for constructing detailed 3D maps of an indoor environment, and discuss its limitations. |
doi_str_mv | 10.1177/0278364912455256 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136416784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364912455256</sage_id><sourcerecordid>1136416784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-9b4883810a38cfe82690af1554103ab77cff72ad70da3784b9d0175d6d2045ac3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7uXQbcuJho0qRNuvQxjsKA4mNdMk0yk6FNatIK_ntTxoUMuLpczncO9x4Azgm-IoTza5xxQQtWkozleZYXB2BCOCOIEl4cgskoo1E_BicxbjHGtMDlBGzmsbet7K13M9g10jnr1jMonYKt7Lq0QOMDlEPvnW_9EKFp7HrTwyGOmnTwdXGL7mEtWx0ktA4uXt6Q0s5qBbX7ssG7Vrs-noIjI5uoz37nFHw8zN_vHtHyefF0d7NENRWsR-WKCUEFwZKK2miRFSWWhuQ5I5jKFee1MTyTimMlKRdsVSpMeK4KlWGWy5pOweUutwv-c9Cxr1oba92k13Q6vyIktUCKZE3oxR669UNw6bqKYIFLWmI-UnhH1cHHGLSpupAaC98Jqsbqq_3qkwXtLFGu9d_Qf_gfeYeByQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080939074</pqid></control><display><type>article</type><title>Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments</title><source>SAGE Complete A-Z List</source><creator>Bachrach, Abraham ; Prentice, Samuel ; He, Ruijie ; Henry, Peter ; Huang, Albert S ; Krainin, Michael ; Maturana, Daniel ; Fox, Dieter ; Roy, Nicholas</creator><creatorcontrib>Bachrach, Abraham ; Prentice, Samuel ; He, Ruijie ; Henry, Peter ; Huang, Albert S ; Krainin, Michael ; Maturana, Daniel ; Fox, Dieter ; Roy, Nicholas</creatorcontrib><description>RGB-D cameras provide both color images and per-pixel depth estimates. The richness of this data and the recent development of low-cost sensors have combined to present an attractive opportunity for mobile robotics research. In this paper, we describe a system for visual odometry and mapping using an RGB-D camera, and its application to autonomous flight. By leveraging results from recent state-of-the-art algorithms and hardware, our system enables 3D flight in cluttered environments using only onboard sensor data. All computation and sensing required for local position control are performed onboard the vehicle, reducing the dependence on an unreliable wireless link to a ground station. However, even with accurate 3D sensing and position estimation, some parts of the environment have more perceptual structure than others, leading to state estimates that vary in accuracy across the environment. If the vehicle plans a path without regard to how well it can localize itself along that path, it runs the risk of becoming lost or worse. We show how the belief roadmap algorithm prentice2009belief, a belief space extension of the probabilistic roadmap algorithm, can be used to plan vehicle trajectories that incorporate the sensing model of the RGB-D camera. We evaluate the effectiveness of our system for controlling a quadrotor micro air vehicle, demonstrate its use for constructing detailed 3D maps of an indoor environment, and discuss its limitations.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364912455256</identifier><identifier>CODEN: IJRREL</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Autonomous ; Cameras ; Detection ; Estimates ; Global positioning systems ; GPS ; Mapping ; Onboard ; Robotics ; Sensors ; Three dimensional ; Three dimensional imaging ; Vehicles ; Vision systems</subject><ispartof>The International journal of robotics research, 2012-09, Vol.31 (11), p.1320-1343</ispartof><rights>The Author(s) 2012</rights><rights>Copyright SAGE PUBLICATIONS, INC. Sep 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-9b4883810a38cfe82690af1554103ab77cff72ad70da3784b9d0175d6d2045ac3</citedby><cites>FETCH-LOGICAL-c384t-9b4883810a38cfe82690af1554103ab77cff72ad70da3784b9d0175d6d2045ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364912455256$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364912455256$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Bachrach, Abraham</creatorcontrib><creatorcontrib>Prentice, Samuel</creatorcontrib><creatorcontrib>He, Ruijie</creatorcontrib><creatorcontrib>Henry, Peter</creatorcontrib><creatorcontrib>Huang, Albert S</creatorcontrib><creatorcontrib>Krainin, Michael</creatorcontrib><creatorcontrib>Maturana, Daniel</creatorcontrib><creatorcontrib>Fox, Dieter</creatorcontrib><creatorcontrib>Roy, Nicholas</creatorcontrib><title>Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments</title><title>The International journal of robotics research</title><description>RGB-D cameras provide both color images and per-pixel depth estimates. The richness of this data and the recent development of low-cost sensors have combined to present an attractive opportunity for mobile robotics research. In this paper, we describe a system for visual odometry and mapping using an RGB-D camera, and its application to autonomous flight. By leveraging results from recent state-of-the-art algorithms and hardware, our system enables 3D flight in cluttered environments using only onboard sensor data. All computation and sensing required for local position control are performed onboard the vehicle, reducing the dependence on an unreliable wireless link to a ground station. However, even with accurate 3D sensing and position estimation, some parts of the environment have more perceptual structure than others, leading to state estimates that vary in accuracy across the environment. If the vehicle plans a path without regard to how well it can localize itself along that path, it runs the risk of becoming lost or worse. We show how the belief roadmap algorithm prentice2009belief, a belief space extension of the probabilistic roadmap algorithm, can be used to plan vehicle trajectories that incorporate the sensing model of the RGB-D camera. We evaluate the effectiveness of our system for controlling a quadrotor micro air vehicle, demonstrate its use for constructing detailed 3D maps of an indoor environment, and discuss its limitations.</description><subject>Algorithms</subject><subject>Autonomous</subject><subject>Cameras</subject><subject>Detection</subject><subject>Estimates</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Mapping</subject><subject>Onboard</subject><subject>Robotics</subject><subject>Sensors</subject><subject>Three dimensional</subject><subject>Three dimensional imaging</subject><subject>Vehicles</subject><subject>Vision systems</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7uXQbcuJho0qRNuvQxjsKA4mNdMk0yk6FNatIK_ntTxoUMuLpczncO9x4Azgm-IoTza5xxQQtWkozleZYXB2BCOCOIEl4cgskoo1E_BicxbjHGtMDlBGzmsbet7K13M9g10jnr1jMonYKt7Lq0QOMDlEPvnW_9EKFp7HrTwyGOmnTwdXGL7mEtWx0ktA4uXt6Q0s5qBbX7ssG7Vrs-noIjI5uoz37nFHw8zN_vHtHyefF0d7NENRWsR-WKCUEFwZKK2miRFSWWhuQ5I5jKFee1MTyTimMlKRdsVSpMeK4KlWGWy5pOweUutwv-c9Cxr1oba92k13Q6vyIktUCKZE3oxR669UNw6bqKYIFLWmI-UnhH1cHHGLSpupAaC98Jqsbqq_3qkwXtLFGu9d_Qf_gfeYeByQ</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Bachrach, Abraham</creator><creator>Prentice, Samuel</creator><creator>He, Ruijie</creator><creator>Henry, Peter</creator><creator>Huang, Albert S</creator><creator>Krainin, Michael</creator><creator>Maturana, Daniel</creator><creator>Fox, Dieter</creator><creator>Roy, Nicholas</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201209</creationdate><title>Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments</title><author>Bachrach, Abraham ; Prentice, Samuel ; He, Ruijie ; Henry, Peter ; Huang, Albert S ; Krainin, Michael ; Maturana, Daniel ; Fox, Dieter ; Roy, Nicholas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-9b4883810a38cfe82690af1554103ab77cff72ad70da3784b9d0175d6d2045ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Autonomous</topic><topic>Cameras</topic><topic>Detection</topic><topic>Estimates</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Mapping</topic><topic>Onboard</topic><topic>Robotics</topic><topic>Sensors</topic><topic>Three dimensional</topic><topic>Three dimensional imaging</topic><topic>Vehicles</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachrach, Abraham</creatorcontrib><creatorcontrib>Prentice, Samuel</creatorcontrib><creatorcontrib>He, Ruijie</creatorcontrib><creatorcontrib>Henry, Peter</creatorcontrib><creatorcontrib>Huang, Albert S</creatorcontrib><creatorcontrib>Krainin, Michael</creatorcontrib><creatorcontrib>Maturana, Daniel</creatorcontrib><creatorcontrib>Fox, Dieter</creatorcontrib><creatorcontrib>Roy, Nicholas</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachrach, Abraham</au><au>Prentice, Samuel</au><au>He, Ruijie</au><au>Henry, Peter</au><au>Huang, Albert S</au><au>Krainin, Michael</au><au>Maturana, Daniel</au><au>Fox, Dieter</au><au>Roy, Nicholas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments</atitle><jtitle>The International journal of robotics research</jtitle><date>2012-09</date><risdate>2012</risdate><volume>31</volume><issue>11</issue><spage>1320</spage><epage>1343</epage><pages>1320-1343</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><coden>IJRREL</coden><abstract>RGB-D cameras provide both color images and per-pixel depth estimates. The richness of this data and the recent development of low-cost sensors have combined to present an attractive opportunity for mobile robotics research. In this paper, we describe a system for visual odometry and mapping using an RGB-D camera, and its application to autonomous flight. By leveraging results from recent state-of-the-art algorithms and hardware, our system enables 3D flight in cluttered environments using only onboard sensor data. All computation and sensing required for local position control are performed onboard the vehicle, reducing the dependence on an unreliable wireless link to a ground station. However, even with accurate 3D sensing and position estimation, some parts of the environment have more perceptual structure than others, leading to state estimates that vary in accuracy across the environment. If the vehicle plans a path without regard to how well it can localize itself along that path, it runs the risk of becoming lost or worse. We show how the belief roadmap algorithm prentice2009belief, a belief space extension of the probabilistic roadmap algorithm, can be used to plan vehicle trajectories that incorporate the sensing model of the RGB-D camera. We evaluate the effectiveness of our system for controlling a quadrotor micro air vehicle, demonstrate its use for constructing detailed 3D maps of an indoor environment, and discuss its limitations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364912455256</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2012-09, Vol.31 (11), p.1320-1343 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136416784 |
source | SAGE Complete A-Z List |
subjects | Algorithms Autonomous Cameras Detection Estimates Global positioning systems GPS Mapping Onboard Robotics Sensors Three dimensional Three dimensional imaging Vehicles Vision systems |
title | Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation,%20planning,%20and%20mapping%20for%20autonomous%20flight%20using%20an%20RGB-D%20camera%20in%20GPS-denied%20environments&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Bachrach,%20Abraham&rft.date=2012-09&rft.volume=31&rft.issue=11&rft.spage=1320&rft.epage=1343&rft.pages=1320-1343&rft.issn=0278-3649&rft.eissn=1741-3176&rft.coden=IJRREL&rft_id=info:doi/10.1177/0278364912455256&rft_dat=%3Cproquest_cross%3E1136416784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080939074&rft_id=info:pmid/&rft_sage_id=10.1177_0278364912455256&rfr_iscdi=true |