Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008

Two large explosions were recorded by a dense array of strong-motion accelerometers and rotational seismometers in northeastern Taiwan associated with a Taiwan Integrated Geodynamics Research long-range refraction experiment. The objective of this experiment was to test the response of the experimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of seismology 2012-10, Vol.16 (4), p.733-743
Hauptverfasser: Kendall, Lauren M., Langston, Charles A., Lee, W. H. K., Lin, C. J., Liu, C. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 743
container_issue 4
container_start_page 733
container_title Journal of seismology
container_volume 16
creator Kendall, Lauren M.
Langston, Charles A.
Lee, W. H. K.
Lin, C. J.
Liu, C. C.
description Two large explosions were recorded by a dense array of strong-motion accelerometers and rotational seismometers in northeastern Taiwan associated with a Taiwan Integrated Geodynamics Research long-range refraction experiment. The objective of this experiment was to test the response of the experimental eentec rotational seismometers against calculated array rotations. Computed array rotation rates are seen to have little variation across the array, but point rotation rate measurements obtained from individual rotational seismometers show significant deviations with each other and with the array rotation rates in the ranges of 3–5 Hz and, especially, 3–50 Hz. A cross-correlation method was used to compare array-computed rotation rates and point rotation rate measurements in the frequency band of 3–5 Hz with the result that the absolute value of the normalized maximum correlation coefficient for each station set varied from 0.45 to 0.97 with an average of 0.84. Amplitude differences of the point rotation rate measurements are seen to be factors of 0.2 to 1.8 times the array rotations as well. It is not likely that the differences seen in the point and array-computed rotation rates are due to nonlinear or heterogeneous site conditions under each array element since these effects should also be seen in the acceleration data used to determine rotation rate. A rigorous method for accurately calibrating rotation rate instruments is needed to understand their response in the field.
doi_str_mv 10.1007/s10950-012-9297-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136414786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1136414786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-addc2c17e952bbfd9165f0dd572b3a2b038c9f95b2b68c6b7f026b82cecaa463</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeACL5E86dtmscx5hxMBNmD-BLSNHEdXVOTFty3N7UiIvhy74XzO4fLAeCS4FuCMb8LBIsUI0woElRwlByBCUk5Q3G8HMeb5QwlWSJOwVkIO4yxyAWbgNe527fKV8E10FnYuqrpoGpKqLxXB6Sj2nemhN51qqtcE6B1HnZbAzez1XLxDM1HW7vwpUR_Ah-V11tIMc7PwYlVdTAX33sKNveLzfwBrZ-Wq_lsjTTjokOqLDXVhBuR0qKwpSBZanFZppwWTNECs1wLK9KCFlmus4JbTLMip9popZKMTcHNGNt6996b0Ml9FbSpa9UY1wdJCMsSkvB8QK_-oDvX-yY-JwlmnPOUcRIpMlLauxC8sbL11V75Q4TkULYcy5axbDmULZPouf5OVkGr2nrV6Cr8GGnGeErwwNGRC1Fq3oz__cF_4Z9hHo2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037775371</pqid></control><display><type>article</type><title>Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kendall, Lauren M. ; Langston, Charles A. ; Lee, W. H. K. ; Lin, C. J. ; Liu, C. C.</creator><creatorcontrib>Kendall, Lauren M. ; Langston, Charles A. ; Lee, W. H. K. ; Lin, C. J. ; Liu, C. C.</creatorcontrib><description>Two large explosions were recorded by a dense array of strong-motion accelerometers and rotational seismometers in northeastern Taiwan associated with a Taiwan Integrated Geodynamics Research long-range refraction experiment. The objective of this experiment was to test the response of the experimental eentec rotational seismometers against calculated array rotations. Computed array rotation rates are seen to have little variation across the array, but point rotation rate measurements obtained from individual rotational seismometers show significant deviations with each other and with the array rotation rates in the ranges of 3–5 Hz and, especially, 3–50 Hz. A cross-correlation method was used to compare array-computed rotation rates and point rotation rate measurements in the frequency band of 3–5 Hz with the result that the absolute value of the normalized maximum correlation coefficient for each station set varied from 0.45 to 0.97 with an average of 0.84. Amplitude differences of the point rotation rate measurements are seen to be factors of 0.2 to 1.8 times the array rotations as well. It is not likely that the differences seen in the point and array-computed rotation rates are due to nonlinear or heterogeneous site conditions under each array element since these effects should also be seen in the acceleration data used to determine rotation rate. A rigorous method for accurately calibrating rotation rate instruments is needed to understand their response in the field.</description><identifier>ISSN: 1383-4649</identifier><identifier>EISSN: 1573-157X</identifier><identifier>DOI: 10.1007/s10950-012-9297-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accelerometers ; Arrays ; Calibration ; Correlation analysis ; Correlation coefficient ; Deviation ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Earthquakes, seismology ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Explosions ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Instrumentation ; Internal geophysics ; Measuring instruments ; Natural hazards: prediction, damages, etc ; Original Article ; Rotational ; Seismic engineering ; Seismic phenomena ; Seismic response ; Seismology ; Structural Geology</subject><ispartof>Journal of seismology, 2012-10, Vol.16 (4), p.733-743</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-addc2c17e952bbfd9165f0dd572b3a2b038c9f95b2b68c6b7f026b82cecaa463</citedby><cites>FETCH-LOGICAL-c379t-addc2c17e952bbfd9165f0dd572b3a2b038c9f95b2b68c6b7f026b82cecaa463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10950-012-9297-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10950-012-9297-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26375104$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kendall, Lauren M.</creatorcontrib><creatorcontrib>Langston, Charles A.</creatorcontrib><creatorcontrib>Lee, W. H. K.</creatorcontrib><creatorcontrib>Lin, C. J.</creatorcontrib><creatorcontrib>Liu, C. C.</creatorcontrib><title>Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008</title><title>Journal of seismology</title><addtitle>J Seismol</addtitle><description>Two large explosions were recorded by a dense array of strong-motion accelerometers and rotational seismometers in northeastern Taiwan associated with a Taiwan Integrated Geodynamics Research long-range refraction experiment. The objective of this experiment was to test the response of the experimental eentec rotational seismometers against calculated array rotations. Computed array rotation rates are seen to have little variation across the array, but point rotation rate measurements obtained from individual rotational seismometers show significant deviations with each other and with the array rotation rates in the ranges of 3–5 Hz and, especially, 3–50 Hz. A cross-correlation method was used to compare array-computed rotation rates and point rotation rate measurements in the frequency band of 3–5 Hz with the result that the absolute value of the normalized maximum correlation coefficient for each station set varied from 0.45 to 0.97 with an average of 0.84. Amplitude differences of the point rotation rate measurements are seen to be factors of 0.2 to 1.8 times the array rotations as well. It is not likely that the differences seen in the point and array-computed rotation rates are due to nonlinear or heterogeneous site conditions under each array element since these effects should also be seen in the acceleration data used to determine rotation rate. A rigorous method for accurately calibrating rotation rate instruments is needed to understand their response in the field.</description><subject>Accelerometers</subject><subject>Arrays</subject><subject>Calibration</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Deviation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes, seismology</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Explosions</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Instrumentation</subject><subject>Internal geophysics</subject><subject>Measuring instruments</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Original Article</subject><subject>Rotational</subject><subject>Seismic engineering</subject><subject>Seismic phenomena</subject><subject>Seismic response</subject><subject>Seismology</subject><subject>Structural Geology</subject><issn>1383-4649</issn><issn>1573-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kF9LwzAUxYMoOKcfwLeACL5E86dtmscx5hxMBNmD-BLSNHEdXVOTFty3N7UiIvhy74XzO4fLAeCS4FuCMb8LBIsUI0woElRwlByBCUk5Q3G8HMeb5QwlWSJOwVkIO4yxyAWbgNe527fKV8E10FnYuqrpoGpKqLxXB6Sj2nemhN51qqtcE6B1HnZbAzez1XLxDM1HW7vwpUR_Ah-V11tIMc7PwYlVdTAX33sKNveLzfwBrZ-Wq_lsjTTjokOqLDXVhBuR0qKwpSBZanFZppwWTNECs1wLK9KCFlmus4JbTLMip9popZKMTcHNGNt6996b0Ml9FbSpa9UY1wdJCMsSkvB8QK_-oDvX-yY-JwlmnPOUcRIpMlLauxC8sbL11V75Q4TkULYcy5axbDmULZPouf5OVkGr2nrV6Cr8GGnGeErwwNGRC1Fq3oz__cF_4Z9hHo2g</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Kendall, Lauren M.</creator><creator>Langston, Charles A.</creator><creator>Lee, W. H. K.</creator><creator>Lin, C. J.</creator><creator>Liu, C. C.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SM</scope></search><sort><creationdate>20121001</creationdate><title>Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008</title><author>Kendall, Lauren M. ; Langston, Charles A. ; Lee, W. H. K. ; Lin, C. J. ; Liu, C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-addc2c17e952bbfd9165f0dd572b3a2b038c9f95b2b68c6b7f026b82cecaa463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accelerometers</topic><topic>Arrays</topic><topic>Calibration</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Deviation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes, seismology</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Explosions</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Instrumentation</topic><topic>Internal geophysics</topic><topic>Measuring instruments</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Original Article</topic><topic>Rotational</topic><topic>Seismic engineering</topic><topic>Seismic phenomena</topic><topic>Seismic response</topic><topic>Seismology</topic><topic>Structural Geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kendall, Lauren M.</creatorcontrib><creatorcontrib>Langston, Charles A.</creatorcontrib><creatorcontrib>Lee, W. H. K.</creatorcontrib><creatorcontrib>Lin, C. J.</creatorcontrib><creatorcontrib>Liu, C. C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Journal of seismology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kendall, Lauren M.</au><au>Langston, Charles A.</au><au>Lee, W. H. K.</au><au>Lin, C. J.</au><au>Liu, C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008</atitle><jtitle>Journal of seismology</jtitle><stitle>J Seismol</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>16</volume><issue>4</issue><spage>733</spage><epage>743</epage><pages>733-743</pages><issn>1383-4649</issn><eissn>1573-157X</eissn><abstract>Two large explosions were recorded by a dense array of strong-motion accelerometers and rotational seismometers in northeastern Taiwan associated with a Taiwan Integrated Geodynamics Research long-range refraction experiment. The objective of this experiment was to test the response of the experimental eentec rotational seismometers against calculated array rotations. Computed array rotation rates are seen to have little variation across the array, but point rotation rate measurements obtained from individual rotational seismometers show significant deviations with each other and with the array rotation rates in the ranges of 3–5 Hz and, especially, 3–50 Hz. A cross-correlation method was used to compare array-computed rotation rates and point rotation rate measurements in the frequency band of 3–5 Hz with the result that the absolute value of the normalized maximum correlation coefficient for each station set varied from 0.45 to 0.97 with an average of 0.84. Amplitude differences of the point rotation rate measurements are seen to be factors of 0.2 to 1.8 times the array rotations as well. It is not likely that the differences seen in the point and array-computed rotation rates are due to nonlinear or heterogeneous site conditions under each array element since these effects should also be seen in the acceleration data used to determine rotation rate. A rigorous method for accurately calibrating rotation rate instruments is needed to understand their response in the field.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10950-012-9297-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1383-4649
ispartof Journal of seismology, 2012-10, Vol.16 (4), p.733-743
issn 1383-4649
1573-157X
language eng
recordid cdi_proquest_miscellaneous_1136414786
source SpringerLink Journals - AutoHoldings
subjects Accelerometers
Arrays
Calibration
Correlation analysis
Correlation coefficient
Deviation
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Earthquakes, seismology
Engineering and environment geology. Geothermics
Exact sciences and technology
Explosions
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Instrumentation
Internal geophysics
Measuring instruments
Natural hazards: prediction, damages, etc
Original Article
Rotational
Seismic engineering
Seismic phenomena
Seismic response
Seismology
Structural Geology
title Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20point%20and%20array-computed%20rotations%20for%20the%20TAIGER%20explosions%20of%204%20March%202008&rft.jtitle=Journal%20of%20seismology&rft.au=Kendall,%20Lauren%20M.&rft.date=2012-10-01&rft.volume=16&rft.issue=4&rft.spage=733&rft.epage=743&rft.pages=733-743&rft.issn=1383-4649&rft.eissn=1573-157X&rft_id=info:doi/10.1007/s10950-012-9297-4&rft_dat=%3Cproquest_cross%3E1136414786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037775371&rft_id=info:pmid/&rfr_iscdi=true