Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008
Two large explosions were recorded by a dense array of strong-motion accelerometers and rotational seismometers in northeastern Taiwan associated with a Taiwan Integrated Geodynamics Research long-range refraction experiment. The objective of this experiment was to test the response of the experimen...
Gespeichert in:
Veröffentlicht in: | Journal of seismology 2012-10, Vol.16 (4), p.733-743 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 743 |
---|---|
container_issue | 4 |
container_start_page | 733 |
container_title | Journal of seismology |
container_volume | 16 |
creator | Kendall, Lauren M. Langston, Charles A. Lee, W. H. K. Lin, C. J. Liu, C. C. |
description | Two large explosions were recorded by a dense array of strong-motion accelerometers and rotational seismometers in northeastern Taiwan associated with a Taiwan Integrated Geodynamics Research long-range refraction experiment. The objective of this experiment was to test the response of the experimental eentec rotational seismometers against calculated array rotations. Computed array rotation rates are seen to have little variation across the array, but point rotation rate measurements obtained from individual rotational seismometers show significant deviations with each other and with the array rotation rates in the ranges of 3–5 Hz and, especially, 3–50 Hz. A cross-correlation method was used to compare array-computed rotation rates and point rotation rate measurements in the frequency band of 3–5 Hz with the result that the absolute value of the normalized maximum correlation coefficient for each station set varied from 0.45 to 0.97 with an average of 0.84. Amplitude differences of the point rotation rate measurements are seen to be factors of 0.2 to 1.8 times the array rotations as well. It is not likely that the differences seen in the point and array-computed rotation rates are due to nonlinear or heterogeneous site conditions under each array element since these effects should also be seen in the acceleration data used to determine rotation rate. A rigorous method for accurately calibrating rotation rate instruments is needed to understand their response in the field. |
doi_str_mv | 10.1007/s10950-012-9297-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136414786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1136414786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-addc2c17e952bbfd9165f0dd572b3a2b038c9f95b2b68c6b7f026b82cecaa463</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeACL5E86dtmscx5hxMBNmD-BLSNHEdXVOTFty3N7UiIvhy74XzO4fLAeCS4FuCMb8LBIsUI0woElRwlByBCUk5Q3G8HMeb5QwlWSJOwVkIO4yxyAWbgNe527fKV8E10FnYuqrpoGpKqLxXB6Sj2nemhN51qqtcE6B1HnZbAzez1XLxDM1HW7vwpUR_Ah-V11tIMc7PwYlVdTAX33sKNveLzfwBrZ-Wq_lsjTTjokOqLDXVhBuR0qKwpSBZanFZppwWTNECs1wLK9KCFlmus4JbTLMip9popZKMTcHNGNt6996b0Ml9FbSpa9UY1wdJCMsSkvB8QK_-oDvX-yY-JwlmnPOUcRIpMlLauxC8sbL11V75Q4TkULYcy5axbDmULZPouf5OVkGr2nrV6Cr8GGnGeErwwNGRC1Fq3oz__cF_4Z9hHo2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037775371</pqid></control><display><type>article</type><title>Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kendall, Lauren M. ; Langston, Charles A. ; Lee, W. H. K. ; Lin, C. J. ; Liu, C. C.</creator><creatorcontrib>Kendall, Lauren M. ; Langston, Charles A. ; Lee, W. H. K. ; Lin, C. J. ; Liu, C. C.</creatorcontrib><description>Two large explosions were recorded by a dense array of strong-motion accelerometers and rotational seismometers in northeastern Taiwan associated with a Taiwan Integrated Geodynamics Research long-range refraction experiment. The objective of this experiment was to test the response of the experimental eentec rotational seismometers against calculated array rotations. Computed array rotation rates are seen to have little variation across the array, but point rotation rate measurements obtained from individual rotational seismometers show significant deviations with each other and with the array rotation rates in the ranges of 3–5 Hz and, especially, 3–50 Hz. A cross-correlation method was used to compare array-computed rotation rates and point rotation rate measurements in the frequency band of 3–5 Hz with the result that the absolute value of the normalized maximum correlation coefficient for each station set varied from 0.45 to 0.97 with an average of 0.84. Amplitude differences of the point rotation rate measurements are seen to be factors of 0.2 to 1.8 times the array rotations as well. It is not likely that the differences seen in the point and array-computed rotation rates are due to nonlinear or heterogeneous site conditions under each array element since these effects should also be seen in the acceleration data used to determine rotation rate. A rigorous method for accurately calibrating rotation rate instruments is needed to understand their response in the field.</description><identifier>ISSN: 1383-4649</identifier><identifier>EISSN: 1573-157X</identifier><identifier>DOI: 10.1007/s10950-012-9297-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accelerometers ; Arrays ; Calibration ; Correlation analysis ; Correlation coefficient ; Deviation ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Earthquakes, seismology ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Explosions ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Instrumentation ; Internal geophysics ; Measuring instruments ; Natural hazards: prediction, damages, etc ; Original Article ; Rotational ; Seismic engineering ; Seismic phenomena ; Seismic response ; Seismology ; Structural Geology</subject><ispartof>Journal of seismology, 2012-10, Vol.16 (4), p.733-743</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-addc2c17e952bbfd9165f0dd572b3a2b038c9f95b2b68c6b7f026b82cecaa463</citedby><cites>FETCH-LOGICAL-c379t-addc2c17e952bbfd9165f0dd572b3a2b038c9f95b2b68c6b7f026b82cecaa463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10950-012-9297-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10950-012-9297-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26375104$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kendall, Lauren M.</creatorcontrib><creatorcontrib>Langston, Charles A.</creatorcontrib><creatorcontrib>Lee, W. H. K.</creatorcontrib><creatorcontrib>Lin, C. J.</creatorcontrib><creatorcontrib>Liu, C. C.</creatorcontrib><title>Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008</title><title>Journal of seismology</title><addtitle>J Seismol</addtitle><description>Two large explosions were recorded by a dense array of strong-motion accelerometers and rotational seismometers in northeastern Taiwan associated with a Taiwan Integrated Geodynamics Research long-range refraction experiment. The objective of this experiment was to test the response of the experimental eentec rotational seismometers against calculated array rotations. Computed array rotation rates are seen to have little variation across the array, but point rotation rate measurements obtained from individual rotational seismometers show significant deviations with each other and with the array rotation rates in the ranges of 3–5 Hz and, especially, 3–50 Hz. A cross-correlation method was used to compare array-computed rotation rates and point rotation rate measurements in the frequency band of 3–5 Hz with the result that the absolute value of the normalized maximum correlation coefficient for each station set varied from 0.45 to 0.97 with an average of 0.84. Amplitude differences of the point rotation rate measurements are seen to be factors of 0.2 to 1.8 times the array rotations as well. It is not likely that the differences seen in the point and array-computed rotation rates are due to nonlinear or heterogeneous site conditions under each array element since these effects should also be seen in the acceleration data used to determine rotation rate. A rigorous method for accurately calibrating rotation rate instruments is needed to understand their response in the field.</description><subject>Accelerometers</subject><subject>Arrays</subject><subject>Calibration</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Deviation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes, seismology</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Explosions</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Instrumentation</subject><subject>Internal geophysics</subject><subject>Measuring instruments</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Original Article</subject><subject>Rotational</subject><subject>Seismic engineering</subject><subject>Seismic phenomena</subject><subject>Seismic response</subject><subject>Seismology</subject><subject>Structural Geology</subject><issn>1383-4649</issn><issn>1573-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kF9LwzAUxYMoOKcfwLeACL5E86dtmscx5hxMBNmD-BLSNHEdXVOTFty3N7UiIvhy74XzO4fLAeCS4FuCMb8LBIsUI0woElRwlByBCUk5Q3G8HMeb5QwlWSJOwVkIO4yxyAWbgNe527fKV8E10FnYuqrpoGpKqLxXB6Sj2nemhN51qqtcE6B1HnZbAzez1XLxDM1HW7vwpUR_Ah-V11tIMc7PwYlVdTAX33sKNveLzfwBrZ-Wq_lsjTTjokOqLDXVhBuR0qKwpSBZanFZppwWTNECs1wLK9KCFlmus4JbTLMip9popZKMTcHNGNt6996b0Ml9FbSpa9UY1wdJCMsSkvB8QK_-oDvX-yY-JwlmnPOUcRIpMlLauxC8sbL11V75Q4TkULYcy5axbDmULZPouf5OVkGr2nrV6Cr8GGnGeErwwNGRC1Fq3oz__cF_4Z9hHo2g</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Kendall, Lauren M.</creator><creator>Langston, Charles A.</creator><creator>Lee, W. H. K.</creator><creator>Lin, C. J.</creator><creator>Liu, C. C.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SM</scope></search><sort><creationdate>20121001</creationdate><title>Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008</title><author>Kendall, Lauren M. ; Langston, Charles A. ; Lee, W. H. K. ; Lin, C. J. ; Liu, C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-addc2c17e952bbfd9165f0dd572b3a2b038c9f95b2b68c6b7f026b82cecaa463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accelerometers</topic><topic>Arrays</topic><topic>Calibration</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Deviation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes, seismology</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Explosions</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Instrumentation</topic><topic>Internal geophysics</topic><topic>Measuring instruments</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Original Article</topic><topic>Rotational</topic><topic>Seismic engineering</topic><topic>Seismic phenomena</topic><topic>Seismic response</topic><topic>Seismology</topic><topic>Structural Geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kendall, Lauren M.</creatorcontrib><creatorcontrib>Langston, Charles A.</creatorcontrib><creatorcontrib>Lee, W. H. K.</creatorcontrib><creatorcontrib>Lin, C. J.</creatorcontrib><creatorcontrib>Liu, C. C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Journal of seismology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kendall, Lauren M.</au><au>Langston, Charles A.</au><au>Lee, W. H. K.</au><au>Lin, C. J.</au><au>Liu, C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008</atitle><jtitle>Journal of seismology</jtitle><stitle>J Seismol</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>16</volume><issue>4</issue><spage>733</spage><epage>743</epage><pages>733-743</pages><issn>1383-4649</issn><eissn>1573-157X</eissn><abstract>Two large explosions were recorded by a dense array of strong-motion accelerometers and rotational seismometers in northeastern Taiwan associated with a Taiwan Integrated Geodynamics Research long-range refraction experiment. The objective of this experiment was to test the response of the experimental eentec rotational seismometers against calculated array rotations. Computed array rotation rates are seen to have little variation across the array, but point rotation rate measurements obtained from individual rotational seismometers show significant deviations with each other and with the array rotation rates in the ranges of 3–5 Hz and, especially, 3–50 Hz. A cross-correlation method was used to compare array-computed rotation rates and point rotation rate measurements in the frequency band of 3–5 Hz with the result that the absolute value of the normalized maximum correlation coefficient for each station set varied from 0.45 to 0.97 with an average of 0.84. Amplitude differences of the point rotation rate measurements are seen to be factors of 0.2 to 1.8 times the array rotations as well. It is not likely that the differences seen in the point and array-computed rotation rates are due to nonlinear or heterogeneous site conditions under each array element since these effects should also be seen in the acceleration data used to determine rotation rate. A rigorous method for accurately calibrating rotation rate instruments is needed to understand their response in the field.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10950-012-9297-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-4649 |
ispartof | Journal of seismology, 2012-10, Vol.16 (4), p.733-743 |
issn | 1383-4649 1573-157X |
language | eng |
recordid | cdi_proquest_miscellaneous_1136414786 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accelerometers Arrays Calibration Correlation analysis Correlation coefficient Deviation Earth and Environmental Science Earth Sciences Earth, ocean, space Earthquakes, seismology Engineering and environment geology. Geothermics Exact sciences and technology Explosions Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrogeology Instrumentation Internal geophysics Measuring instruments Natural hazards: prediction, damages, etc Original Article Rotational Seismic engineering Seismic phenomena Seismic response Seismology Structural Geology |
title | Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20point%20and%20array-computed%20rotations%20for%20the%20TAIGER%20explosions%20of%204%20March%202008&rft.jtitle=Journal%20of%20seismology&rft.au=Kendall,%20Lauren%20M.&rft.date=2012-10-01&rft.volume=16&rft.issue=4&rft.spage=733&rft.epage=743&rft.pages=733-743&rft.issn=1383-4649&rft.eissn=1573-157X&rft_id=info:doi/10.1007/s10950-012-9297-4&rft_dat=%3Cproquest_cross%3E1136414786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037775371&rft_id=info:pmid/&rfr_iscdi=true |