Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems

In a recent paper by Monteiro and Svaiter, a hybrid proximal extragradient (HPE) framework was used to study the iteration-complexity of a first-order (or, in the context of optimization, second-order) method for solving monotone nonlinear equations. The purpose of this paper is to extend this analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2012-01, Vol.22 (3), p.914-935
Hauptverfasser: Monteiro, Renato D. C., Svaiter, Benar F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 3
container_start_page 914
container_title SIAM journal on optimization
container_volume 22
creator Monteiro, Renato D. C.
Svaiter, Benar F.
description In a recent paper by Monteiro and Svaiter, a hybrid proximal extragradient (HPE) framework was used to study the iteration-complexity of a first-order (or, in the context of optimization, second-order) method for solving monotone nonlinear equations. The purpose of this paper is to extend this analysis to study a prox-type first-order method for monotone smooth variational inequalities and inclusion problems consisting of the sum of a smooth monotone map and a maximal monotone point-to-set operator. Each iteration of the method computes an approximate solution of a proximal subproblem obtained by linearizing the smooth part of the operator in the corresponding proximal equation for the original problem, which is then used to perform an extragradient step as prescribed by the HPE framework. Both pointwise and ergodic iteration-complexity results are derived for the aforementioned first-order method using corresponding results obtained here for a subfamily of the HPE framework. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/11083085X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136410532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1136410532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-b28c8d7847b1f3bc55207ca22e1fc903f8476d48fb2b589c01ead984d94b482f3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhhdRsFYP_oOAFz2s5mN3kxylVC1Y9aDibclmE03Jbtokiy3-eVMrHjzNMPPwwLyTZacIXiJE6BVCkBHIyre9bIQgL3OKGN_f9iXOK0yKw-wohAWEkPGKjbKvWVReROP6fOK6pVVrEzfAaSDAg_qMrgdP3q1NJyyYrqMX7160RvURzFX8cC3QzoO5610iFXgV3vy4Ej3r1WoQ1kSjAhB9mwbSDsHsjI1VXTjODrSwQZ381nH2cjN9ntzl94-3s8n1fS4xhzFvMJOspaygDdKkkWWJIZUCY4W05JDotKnagukGNyXjEiIlWs6KlhdNwbAm4-x85116txpUiHVnglTWil65IdQpuKpIARGc0LN_6MINPt2TKEggJbRkVaIudpT0LgSvdL30KSK_SdDWRuu_N5BvXSx7Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030737586</pqid></control><display><type>article</type><title>Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems</title><source>SIAM Journals Online</source><creator>Monteiro, Renato D. C. ; Svaiter, Benar F.</creator><creatorcontrib>Monteiro, Renato D. C. ; Svaiter, Benar F.</creatorcontrib><description>In a recent paper by Monteiro and Svaiter, a hybrid proximal extragradient (HPE) framework was used to study the iteration-complexity of a first-order (or, in the context of optimization, second-order) method for solving monotone nonlinear equations. The purpose of this paper is to extend this analysis to study a prox-type first-order method for monotone smooth variational inequalities and inclusion problems consisting of the sum of a smooth monotone map and a maximal monotone point-to-set operator. Each iteration of the method computes an approximate solution of a proximal subproblem obtained by linearizing the smooth part of the operator in the corresponding proximal equation for the original problem, which is then used to perform an extragradient step as prescribed by the HPE framework. Both pointwise and ergodic iteration-complexity results are derived for the aforementioned first-order method using corresponding results obtained here for a subfamily of the HPE framework. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/11083085X</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Convex analysis ; Inclusions ; Inequalities ; Mathematical analysis ; Mathematical models ; Methods ; Nonlinear equations ; Operators ; Optimization</subject><ispartof>SIAM journal on optimization, 2012-01, Vol.22 (3), p.914-935</ispartof><rights>2012, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-b28c8d7847b1f3bc55207ca22e1fc903f8476d48fb2b589c01ead984d94b482f3</citedby><cites>FETCH-LOGICAL-c290t-b28c8d7847b1f3bc55207ca22e1fc903f8476d48fb2b589c01ead984d94b482f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Monteiro, Renato D. C.</creatorcontrib><creatorcontrib>Svaiter, Benar F.</creatorcontrib><title>Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems</title><title>SIAM journal on optimization</title><description>In a recent paper by Monteiro and Svaiter, a hybrid proximal extragradient (HPE) framework was used to study the iteration-complexity of a first-order (or, in the context of optimization, second-order) method for solving monotone nonlinear equations. The purpose of this paper is to extend this analysis to study a prox-type first-order method for monotone smooth variational inequalities and inclusion problems consisting of the sum of a smooth monotone map and a maximal monotone point-to-set operator. Each iteration of the method computes an approximate solution of a proximal subproblem obtained by linearizing the smooth part of the operator in the corresponding proximal equation for the original problem, which is then used to perform an extragradient step as prescribed by the HPE framework. Both pointwise and ergodic iteration-complexity results are derived for the aforementioned first-order method using corresponding results obtained here for a subfamily of the HPE framework. [PUBLICATION ABSTRACT]</description><subject>Approximation</subject><subject>Convex analysis</subject><subject>Inclusions</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Nonlinear equations</subject><subject>Operators</subject><subject>Optimization</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU1LAzEQhhdRsFYP_oOAFz2s5mN3kxylVC1Y9aDibclmE03Jbtokiy3-eVMrHjzNMPPwwLyTZacIXiJE6BVCkBHIyre9bIQgL3OKGN_f9iXOK0yKw-wohAWEkPGKjbKvWVReROP6fOK6pVVrEzfAaSDAg_qMrgdP3q1NJyyYrqMX7160RvURzFX8cC3QzoO5610iFXgV3vy4Ej3r1WoQ1kSjAhB9mwbSDsHsjI1VXTjODrSwQZ381nH2cjN9ntzl94-3s8n1fS4xhzFvMJOspaygDdKkkWWJIZUCY4W05JDotKnagukGNyXjEiIlWs6KlhdNwbAm4-x85116txpUiHVnglTWil65IdQpuKpIARGc0LN_6MINPt2TKEggJbRkVaIudpT0LgSvdL30KSK_SdDWRuu_N5BvXSx7Ng</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Monteiro, Renato D. C.</creator><creator>Svaiter, Benar F.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120101</creationdate><title>Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems</title><author>Monteiro, Renato D. C. ; Svaiter, Benar F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-b28c8d7847b1f3bc55207ca22e1fc903f8476d48fb2b589c01ead984d94b482f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Convex analysis</topic><topic>Inclusions</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Nonlinear equations</topic><topic>Operators</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, Renato D. C.</creatorcontrib><creatorcontrib>Svaiter, Benar F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, Renato D. C.</au><au>Svaiter, Benar F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems</atitle><jtitle>SIAM journal on optimization</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>22</volume><issue>3</issue><spage>914</spage><epage>935</epage><pages>914-935</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>In a recent paper by Monteiro and Svaiter, a hybrid proximal extragradient (HPE) framework was used to study the iteration-complexity of a first-order (or, in the context of optimization, second-order) method for solving monotone nonlinear equations. The purpose of this paper is to extend this analysis to study a prox-type first-order method for monotone smooth variational inequalities and inclusion problems consisting of the sum of a smooth monotone map and a maximal monotone point-to-set operator. Each iteration of the method computes an approximate solution of a proximal subproblem obtained by linearizing the smooth part of the operator in the corresponding proximal equation for the original problem, which is then used to perform an extragradient step as prescribed by the HPE framework. Both pointwise and ergodic iteration-complexity results are derived for the aforementioned first-order method using corresponding results obtained here for a subfamily of the HPE framework. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/11083085X</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1052-6234
ispartof SIAM journal on optimization, 2012-01, Vol.22 (3), p.914-935
issn 1052-6234
1095-7189
language eng
recordid cdi_proquest_miscellaneous_1136410532
source SIAM Journals Online
subjects Approximation
Convex analysis
Inclusions
Inequalities
Mathematical analysis
Mathematical models
Methods
Nonlinear equations
Operators
Optimization
title Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iteration-Complexity%20of%20a%20Newton%20Proximal%20Extragradient%20Method%20for%20Monotone%20Variational%20Inequalities%20and%20Inclusion%20Problems&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Monteiro,%20Renato%20D.%20C.&rft.date=2012-01-01&rft.volume=22&rft.issue=3&rft.spage=914&rft.epage=935&rft.pages=914-935&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/11083085X&rft_dat=%3Cproquest_cross%3E1136410532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030737586&rft_id=info:pmid/&rfr_iscdi=true