Controlling chemical reactions of a single particle
Chemical reactions between a single trapped ion and a condensate of ultracold neutral atoms are investigated by controlling the quantum states of both ion and atoms—revealing the effect of the hyperfine interaction on the reaction dynamics. Traditionally, chemical reactions have been investigated by...
Gespeichert in:
Veröffentlicht in: | Nature physics 2012-09, Vol.8 (9), p.649-652 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 652 |
---|---|
container_issue | 9 |
container_start_page | 649 |
container_title | Nature physics |
container_volume | 8 |
creator | Ratschbacher, Lothar Zipkes, Christoph Sias, Carlo Köhl, Michael |
description | Chemical reactions between a single trapped ion and a condensate of ultracold neutral atoms are investigated by controlling the quantum states of both ion and atoms—revealing the effect of the hyperfine interaction on the reaction dynamics.
Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, laser
1
or magnetic field
2
control methods have emerged to provide new experimental possibilities, in particular in the realm of cold collisions. The control of reaction pathways is also a critical component to implement molecular quantum information processing
3
. For these studies, single particles provide a clean and well-controlled experimental system. Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold neutral atoms by exerting control over both their quantum states. We observe the influence of the hyperfine interaction on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products. These investigations advance chemistry with single trapped particles towards achieving quantum-limited control of chemical reactions and indicate limits for buffer-gas cooling of single-ion clocks. |
doi_str_mv | 10.1038/nphys2373 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136404214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1136404214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-bfe82946b5ab62c4590f3259e03faf41c9e6ebe90b792f8940bf026f736a12783</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgCq6rB_9BwYsK1Xw1bY5S1g9Y8KLnkobJbpc0qUl72H9vtLLInmZgHl5mBqFrgh8IZtWjG7b7SFnJTtCClLzIKa_I6aEv2Tm6iHGHMaeCsAVitXdj8NZ2bpPpLfSdVjYLoPTYeRczbzKVxTS0kA0qjJ22cInOjLIRrv7qEn0-rz7q13z9_vJWP61zncLHvDVQUclFW6hWUM0LiQ2jhQTMjDKcaAkCWpC4LSU1leS4NZgKUzKhCC0rtkS3c-4Q_NcEcWz6LmqwVjnwU2wIYYKnQwhP9OaI7vwUXNqu-XmL5JQJmtTdrHTwMQYwzRC6XoV9Qr-uObwv2fvZxmTcBsL_xGP8DT8RcCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038942362</pqid></control><display><type>article</type><title>Controlling chemical reactions of a single particle</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Ratschbacher, Lothar ; Zipkes, Christoph ; Sias, Carlo ; Köhl, Michael</creator><creatorcontrib>Ratschbacher, Lothar ; Zipkes, Christoph ; Sias, Carlo ; Köhl, Michael</creatorcontrib><description>Chemical reactions between a single trapped ion and a condensate of ultracold neutral atoms are investigated by controlling the quantum states of both ion and atoms—revealing the effect of the hyperfine interaction on the reaction dynamics.
Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, laser
1
or magnetic field
2
control methods have emerged to provide new experimental possibilities, in particular in the realm of cold collisions. The control of reaction pathways is also a critical component to implement molecular quantum information processing
3
. For these studies, single particles provide a clean and well-controlled experimental system. Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold neutral atoms by exerting control over both their quantum states. We observe the influence of the hyperfine interaction on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products. These investigations advance chemistry with single trapped particles towards achieving quantum-limited control of chemical reactions and indicate limits for buffer-gas cooling of single-ion clocks.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2373</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/1120 ; 639/766/36/1125 ; 639/766/94 ; Atomic ; Atoms & subatomic particles ; Buffers (chemistry) ; Chemical reactions ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Cooling ; Ions ; Kinematics ; Lasers ; letter ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Monitors ; Neutral atoms ; Optical and Plasma Physics ; Particle physics ; Physics ; Physics and Astronomy ; Quantum physics ; Theoretical ; Thermodynamics ; Tuning</subject><ispartof>Nature physics, 2012-09, Vol.8 (9), p.649-652</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Sep 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-bfe82946b5ab62c4590f3259e03faf41c9e6ebe90b792f8940bf026f736a12783</citedby><cites>FETCH-LOGICAL-c426t-bfe82946b5ab62c4590f3259e03faf41c9e6ebe90b792f8940bf026f736a12783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys2373$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys2373$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ratschbacher, Lothar</creatorcontrib><creatorcontrib>Zipkes, Christoph</creatorcontrib><creatorcontrib>Sias, Carlo</creatorcontrib><creatorcontrib>Köhl, Michael</creatorcontrib><title>Controlling chemical reactions of a single particle</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Chemical reactions between a single trapped ion and a condensate of ultracold neutral atoms are investigated by controlling the quantum states of both ion and atoms—revealing the effect of the hyperfine interaction on the reaction dynamics.
Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, laser
1
or magnetic field
2
control methods have emerged to provide new experimental possibilities, in particular in the realm of cold collisions. The control of reaction pathways is also a critical component to implement molecular quantum information processing
3
. For these studies, single particles provide a clean and well-controlled experimental system. Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold neutral atoms by exerting control over both their quantum states. We observe the influence of the hyperfine interaction on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products. These investigations advance chemistry with single trapped particles towards achieving quantum-limited control of chemical reactions and indicate limits for buffer-gas cooling of single-ion clocks.</description><subject>639/766/36/1120</subject><subject>639/766/36/1125</subject><subject>639/766/94</subject><subject>Atomic</subject><subject>Atoms & subatomic particles</subject><subject>Buffers (chemistry)</subject><subject>Chemical reactions</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cooling</subject><subject>Ions</subject><subject>Kinematics</subject><subject>Lasers</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Monitors</subject><subject>Neutral atoms</subject><subject>Optical and Plasma Physics</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum physics</subject><subject>Theoretical</subject><subject>Thermodynamics</subject><subject>Tuning</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0E1LxDAQBuAgCq6rB_9BwYsK1Xw1bY5S1g9Y8KLnkobJbpc0qUl72H9vtLLInmZgHl5mBqFrgh8IZtWjG7b7SFnJTtCClLzIKa_I6aEv2Tm6iHGHMaeCsAVitXdj8NZ2bpPpLfSdVjYLoPTYeRczbzKVxTS0kA0qjJ22cInOjLIRrv7qEn0-rz7q13z9_vJWP61zncLHvDVQUclFW6hWUM0LiQ2jhQTMjDKcaAkCWpC4LSU1leS4NZgKUzKhCC0rtkS3c-4Q_NcEcWz6LmqwVjnwU2wIYYKnQwhP9OaI7vwUXNqu-XmL5JQJmtTdrHTwMQYwzRC6XoV9Qr-uObwv2fvZxmTcBsL_xGP8DT8RcCM</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Ratschbacher, Lothar</creator><creator>Zipkes, Christoph</creator><creator>Sias, Carlo</creator><creator>Köhl, Michael</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20120901</creationdate><title>Controlling chemical reactions of a single particle</title><author>Ratschbacher, Lothar ; Zipkes, Christoph ; Sias, Carlo ; Köhl, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-bfe82946b5ab62c4590f3259e03faf41c9e6ebe90b792f8940bf026f736a12783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/766/36/1120</topic><topic>639/766/36/1125</topic><topic>639/766/94</topic><topic>Atomic</topic><topic>Atoms & subatomic particles</topic><topic>Buffers (chemistry)</topic><topic>Chemical reactions</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cooling</topic><topic>Ions</topic><topic>Kinematics</topic><topic>Lasers</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Monitors</topic><topic>Neutral atoms</topic><topic>Optical and Plasma Physics</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum physics</topic><topic>Theoretical</topic><topic>Thermodynamics</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratschbacher, Lothar</creatorcontrib><creatorcontrib>Zipkes, Christoph</creatorcontrib><creatorcontrib>Sias, Carlo</creatorcontrib><creatorcontrib>Köhl, Michael</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratschbacher, Lothar</au><au>Zipkes, Christoph</au><au>Sias, Carlo</au><au>Köhl, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling chemical reactions of a single particle</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>8</volume><issue>9</issue><spage>649</spage><epage>652</epage><pages>649-652</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Chemical reactions between a single trapped ion and a condensate of ultracold neutral atoms are investigated by controlling the quantum states of both ion and atoms—revealing the effect of the hyperfine interaction on the reaction dynamics.
Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, laser
1
or magnetic field
2
control methods have emerged to provide new experimental possibilities, in particular in the realm of cold collisions. The control of reaction pathways is also a critical component to implement molecular quantum information processing
3
. For these studies, single particles provide a clean and well-controlled experimental system. Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold neutral atoms by exerting control over both their quantum states. We observe the influence of the hyperfine interaction on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products. These investigations advance chemistry with single trapped particles towards achieving quantum-limited control of chemical reactions and indicate limits for buffer-gas cooling of single-ion clocks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2373</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2012-09, Vol.8 (9), p.649-652 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136404214 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/766/36/1120 639/766/36/1125 639/766/94 Atomic Atoms & subatomic particles Buffers (chemistry) Chemical reactions Classical and Continuum Physics Complex Systems Condensed Matter Physics Cooling Ions Kinematics Lasers letter Magnetic fields Mathematical and Computational Physics Molecular Monitors Neutral atoms Optical and Plasma Physics Particle physics Physics Physics and Astronomy Quantum physics Theoretical Thermodynamics Tuning |
title | Controlling chemical reactions of a single particle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20chemical%20reactions%20of%20a%20single%20particle&rft.jtitle=Nature%20physics&rft.au=Ratschbacher,%20Lothar&rft.date=2012-09-01&rft.volume=8&rft.issue=9&rft.spage=649&rft.epage=652&rft.pages=649-652&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2373&rft_dat=%3Cproquest_cross%3E1136404214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038942362&rft_id=info:pmid/&rfr_iscdi=true |