Controlling chemical reactions of a single particle

Chemical reactions between a single trapped ion and a condensate of ultracold neutral atoms are investigated by controlling the quantum states of both ion and atoms—revealing the effect of the hyperfine interaction on the reaction dynamics. Traditionally, chemical reactions have been investigated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2012-09, Vol.8 (9), p.649-652
Hauptverfasser: Ratschbacher, Lothar, Zipkes, Christoph, Sias, Carlo, Köhl, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 9
container_start_page 649
container_title Nature physics
container_volume 8
creator Ratschbacher, Lothar
Zipkes, Christoph
Sias, Carlo
Köhl, Michael
description Chemical reactions between a single trapped ion and a condensate of ultracold neutral atoms are investigated by controlling the quantum states of both ion and atoms—revealing the effect of the hyperfine interaction on the reaction dynamics. Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, laser 1 or magnetic field 2 control methods have emerged to provide new experimental possibilities, in particular in the realm of cold collisions. The control of reaction pathways is also a critical component to implement molecular quantum information processing 3 . For these studies, single particles provide a clean and well-controlled experimental system. Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold neutral atoms by exerting control over both their quantum states. We observe the influence of the hyperfine interaction on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products. These investigations advance chemistry with single trapped particles towards achieving quantum-limited control of chemical reactions and indicate limits for buffer-gas cooling of single-ion clocks.
doi_str_mv 10.1038/nphys2373
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136404214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1136404214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-bfe82946b5ab62c4590f3259e03faf41c9e6ebe90b792f8940bf026f736a12783</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgCq6rB_9BwYsK1Xw1bY5S1g9Y8KLnkobJbpc0qUl72H9vtLLInmZgHl5mBqFrgh8IZtWjG7b7SFnJTtCClLzIKa_I6aEv2Tm6iHGHMaeCsAVitXdj8NZ2bpPpLfSdVjYLoPTYeRczbzKVxTS0kA0qjJ22cInOjLIRrv7qEn0-rz7q13z9_vJWP61zncLHvDVQUclFW6hWUM0LiQ2jhQTMjDKcaAkCWpC4LSU1leS4NZgKUzKhCC0rtkS3c-4Q_NcEcWz6LmqwVjnwU2wIYYKnQwhP9OaI7vwUXNqu-XmL5JQJmtTdrHTwMQYwzRC6XoV9Qr-uObwv2fvZxmTcBsL_xGP8DT8RcCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038942362</pqid></control><display><type>article</type><title>Controlling chemical reactions of a single particle</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Ratschbacher, Lothar ; Zipkes, Christoph ; Sias, Carlo ; Köhl, Michael</creator><creatorcontrib>Ratschbacher, Lothar ; Zipkes, Christoph ; Sias, Carlo ; Köhl, Michael</creatorcontrib><description>Chemical reactions between a single trapped ion and a condensate of ultracold neutral atoms are investigated by controlling the quantum states of both ion and atoms—revealing the effect of the hyperfine interaction on the reaction dynamics. Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, laser 1 or magnetic field 2 control methods have emerged to provide new experimental possibilities, in particular in the realm of cold collisions. The control of reaction pathways is also a critical component to implement molecular quantum information processing 3 . For these studies, single particles provide a clean and well-controlled experimental system. Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold neutral atoms by exerting control over both their quantum states. We observe the influence of the hyperfine interaction on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products. These investigations advance chemistry with single trapped particles towards achieving quantum-limited control of chemical reactions and indicate limits for buffer-gas cooling of single-ion clocks.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2373</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/1120 ; 639/766/36/1125 ; 639/766/94 ; Atomic ; Atoms &amp; subatomic particles ; Buffers (chemistry) ; Chemical reactions ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Cooling ; Ions ; Kinematics ; Lasers ; letter ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Monitors ; Neutral atoms ; Optical and Plasma Physics ; Particle physics ; Physics ; Physics and Astronomy ; Quantum physics ; Theoretical ; Thermodynamics ; Tuning</subject><ispartof>Nature physics, 2012-09, Vol.8 (9), p.649-652</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Sep 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-bfe82946b5ab62c4590f3259e03faf41c9e6ebe90b792f8940bf026f736a12783</citedby><cites>FETCH-LOGICAL-c426t-bfe82946b5ab62c4590f3259e03faf41c9e6ebe90b792f8940bf026f736a12783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys2373$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys2373$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ratschbacher, Lothar</creatorcontrib><creatorcontrib>Zipkes, Christoph</creatorcontrib><creatorcontrib>Sias, Carlo</creatorcontrib><creatorcontrib>Köhl, Michael</creatorcontrib><title>Controlling chemical reactions of a single particle</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Chemical reactions between a single trapped ion and a condensate of ultracold neutral atoms are investigated by controlling the quantum states of both ion and atoms—revealing the effect of the hyperfine interaction on the reaction dynamics. Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, laser 1 or magnetic field 2 control methods have emerged to provide new experimental possibilities, in particular in the realm of cold collisions. The control of reaction pathways is also a critical component to implement molecular quantum information processing 3 . For these studies, single particles provide a clean and well-controlled experimental system. Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold neutral atoms by exerting control over both their quantum states. We observe the influence of the hyperfine interaction on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products. These investigations advance chemistry with single trapped particles towards achieving quantum-limited control of chemical reactions and indicate limits for buffer-gas cooling of single-ion clocks.</description><subject>639/766/36/1120</subject><subject>639/766/36/1125</subject><subject>639/766/94</subject><subject>Atomic</subject><subject>Atoms &amp; subatomic particles</subject><subject>Buffers (chemistry)</subject><subject>Chemical reactions</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cooling</subject><subject>Ions</subject><subject>Kinematics</subject><subject>Lasers</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Monitors</subject><subject>Neutral atoms</subject><subject>Optical and Plasma Physics</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum physics</subject><subject>Theoretical</subject><subject>Thermodynamics</subject><subject>Tuning</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0E1LxDAQBuAgCq6rB_9BwYsK1Xw1bY5S1g9Y8KLnkobJbpc0qUl72H9vtLLInmZgHl5mBqFrgh8IZtWjG7b7SFnJTtCClLzIKa_I6aEv2Tm6iHGHMaeCsAVitXdj8NZ2bpPpLfSdVjYLoPTYeRczbzKVxTS0kA0qjJ22cInOjLIRrv7qEn0-rz7q13z9_vJWP61zncLHvDVQUclFW6hWUM0LiQ2jhQTMjDKcaAkCWpC4LSU1leS4NZgKUzKhCC0rtkS3c-4Q_NcEcWz6LmqwVjnwU2wIYYKnQwhP9OaI7vwUXNqu-XmL5JQJmtTdrHTwMQYwzRC6XoV9Qr-uObwv2fvZxmTcBsL_xGP8DT8RcCM</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Ratschbacher, Lothar</creator><creator>Zipkes, Christoph</creator><creator>Sias, Carlo</creator><creator>Köhl, Michael</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20120901</creationdate><title>Controlling chemical reactions of a single particle</title><author>Ratschbacher, Lothar ; Zipkes, Christoph ; Sias, Carlo ; Köhl, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-bfe82946b5ab62c4590f3259e03faf41c9e6ebe90b792f8940bf026f736a12783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/766/36/1120</topic><topic>639/766/36/1125</topic><topic>639/766/94</topic><topic>Atomic</topic><topic>Atoms &amp; subatomic particles</topic><topic>Buffers (chemistry)</topic><topic>Chemical reactions</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cooling</topic><topic>Ions</topic><topic>Kinematics</topic><topic>Lasers</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Monitors</topic><topic>Neutral atoms</topic><topic>Optical and Plasma Physics</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum physics</topic><topic>Theoretical</topic><topic>Thermodynamics</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratschbacher, Lothar</creatorcontrib><creatorcontrib>Zipkes, Christoph</creatorcontrib><creatorcontrib>Sias, Carlo</creatorcontrib><creatorcontrib>Köhl, Michael</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratschbacher, Lothar</au><au>Zipkes, Christoph</au><au>Sias, Carlo</au><au>Köhl, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling chemical reactions of a single particle</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>8</volume><issue>9</issue><spage>649</spage><epage>652</epage><pages>649-652</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Chemical reactions between a single trapped ion and a condensate of ultracold neutral atoms are investigated by controlling the quantum states of both ion and atoms—revealing the effect of the hyperfine interaction on the reaction dynamics. Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, laser 1 or magnetic field 2 control methods have emerged to provide new experimental possibilities, in particular in the realm of cold collisions. The control of reaction pathways is also a critical component to implement molecular quantum information processing 3 . For these studies, single particles provide a clean and well-controlled experimental system. Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold neutral atoms by exerting control over both their quantum states. We observe the influence of the hyperfine interaction on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products. These investigations advance chemistry with single trapped particles towards achieving quantum-limited control of chemical reactions and indicate limits for buffer-gas cooling of single-ion clocks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2373</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2012-09, Vol.8 (9), p.649-652
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1136404214
source SpringerLink Journals; Nature Journals Online
subjects 639/766/36/1120
639/766/36/1125
639/766/94
Atomic
Atoms & subatomic particles
Buffers (chemistry)
Chemical reactions
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Cooling
Ions
Kinematics
Lasers
letter
Magnetic fields
Mathematical and Computational Physics
Molecular
Monitors
Neutral atoms
Optical and Plasma Physics
Particle physics
Physics
Physics and Astronomy
Quantum physics
Theoretical
Thermodynamics
Tuning
title Controlling chemical reactions of a single particle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20chemical%20reactions%20of%20a%20single%20particle&rft.jtitle=Nature%20physics&rft.au=Ratschbacher,%20Lothar&rft.date=2012-09-01&rft.volume=8&rft.issue=9&rft.spage=649&rft.epage=652&rft.pages=649-652&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2373&rft_dat=%3Cproquest_cross%3E1136404214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038942362&rft_id=info:pmid/&rfr_iscdi=true