Global Signal Vulnerability (GSV) Analysis for Selective State Element Hardening in Modern Microprocessors

Global Signal Vulnerability (GSV) analysis is a novel method for assessing the susceptibility of modern microprocessor state elements to failures in the field of operation. In order to effectively allocate design for reliability resources, GSV analysis takes into account the high degree of architect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 2012-10, Vol.61 (10), p.1361-1370
Hauptverfasser: Maniatakos, M., Tirumurti, C., Galivanche, R., Makris, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1370
container_issue 10
container_start_page 1361
container_title IEEE transactions on computers
container_volume 61
creator Maniatakos, M.
Tirumurti, C.
Galivanche, R.
Makris, Y.
description Global Signal Vulnerability (GSV) analysis is a novel method for assessing the susceptibility of modern microprocessor state elements to failures in the field of operation. In order to effectively allocate design for reliability resources, GSV analysis takes into account the high degree of architectural masking exhibited in modern microprocessors and ranks state elements accordingly. The novelty of this method lies in the way this ranking is computed. GSV analysis operates either at the Register Transfer (RT-) or at the Gate-Level, offering increased accuracy in contrast to methods which compute the architectural vulnerability of registers through high-level simulations on performance models. Moreover, it does not rely on extensive Statistical Fault Injection (SFI) campaigns and lengthy executions of workloads to completion in RT- or Gate-Level designs, which would make such analysis prohibitive. Instead, it monitors the behavior of key global microprocessor signals in response to a progressive stuck-at fault injection method during partial workload execution. Experimentation with the Scheduler and Reorder Buffer modules of an Alpha-like microprocessor and a modern Intel microprocessor corroborates that GSV analysis generates a near-optimal ranking, yet is several orders of magnitude faster than existing RT- or Gate-Level approaches.
doi_str_mv 10.1109/TC.2011.172
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136371575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6280561</ieee_id><sourcerecordid>1136371575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-68eac35838eb5879f3b9fb0802b12815764a6423470efa3198fde30ae363e8843</originalsourceid><addsrcrecordid>eNpd0M9LwzAUB_AgCs7pyaOXgJeJdOZHkybHUeYmTDxs7lrS7nVkZO1MWmH_vRkTD56-h_fhPd4XoXtKxpQS_bLKx4xQOqYZu0ADKkSWaC3kJRoQQlWieUqu0U0IO0KIZEQP0G7m2tI4vLTbJsa6dw14U1pnuyMezZbrJzyJg2OwAdetx0twUHX2G_CyMx3gqYM9NB2eG7-BxjZbbBv83m7Ax7CVbw--rSCE1odbdFUbF-DuN4fo83W6yufJ4mP2lk8WScVp2iVSgam4UFxBKVSma17quiSKsJIyRUUmUyNTxtOMQG041areACcGuOSgVMqHaHTeG09_9RC6Ym9DBc6ZBto-FJRGmcVFItLHf3TX9j7-GxXhItWKaxbV81nFd0LwUBcHb_fGHyMqTr0Xq7w49V7E3qN-OGsLAH9SMkWEpPwHsnN8sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035498392</pqid></control><display><type>article</type><title>Global Signal Vulnerability (GSV) Analysis for Selective State Element Hardening in Modern Microprocessors</title><source>IEEE Electronic Library (IEL)</source><creator>Maniatakos, M. ; Tirumurti, C. ; Galivanche, R. ; Makris, Y.</creator><creatorcontrib>Maniatakos, M. ; Tirumurti, C. ; Galivanche, R. ; Makris, Y.</creatorcontrib><description>Global Signal Vulnerability (GSV) analysis is a novel method for assessing the susceptibility of modern microprocessor state elements to failures in the field of operation. In order to effectively allocate design for reliability resources, GSV analysis takes into account the high degree of architectural masking exhibited in modern microprocessors and ranks state elements accordingly. The novelty of this method lies in the way this ranking is computed. GSV analysis operates either at the Register Transfer (RT-) or at the Gate-Level, offering increased accuracy in contrast to methods which compute the architectural vulnerability of registers through high-level simulations on performance models. Moreover, it does not rely on extensive Statistical Fault Injection (SFI) campaigns and lengthy executions of workloads to completion in RT- or Gate-Level designs, which would make such analysis prohibitive. Instead, it monitors the behavior of key global microprocessor signals in response to a progressive stuck-at fault injection method during partial workload execution. Experimentation with the Scheduler and Reorder Buffer modules of an Alpha-like microprocessor and a modern Intel microprocessor corroborates that GSV analysis generates a near-optimal ranking, yet is several orders of magnitude faster than existing RT- or Gate-Level approaches.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2011.172</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Analytical models ; AVF ; Computational modeling ; Computer simulation ; control logic ; Design engineering ; Faults ; GSV ; Latches ; Mathematical models ; Microprocessors ; modern microprocessor ; Ranking ; Registers ; reliability ; Studies ; Transient analysis ; vulnerability analysis ; Workload</subject><ispartof>IEEE transactions on computers, 2012-10, Vol.61 (10), p.1361-1370</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-68eac35838eb5879f3b9fb0802b12815764a6423470efa3198fde30ae363e8843</citedby><cites>FETCH-LOGICAL-c314t-68eac35838eb5879f3b9fb0802b12815764a6423470efa3198fde30ae363e8843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6280561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6280561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maniatakos, M.</creatorcontrib><creatorcontrib>Tirumurti, C.</creatorcontrib><creatorcontrib>Galivanche, R.</creatorcontrib><creatorcontrib>Makris, Y.</creatorcontrib><title>Global Signal Vulnerability (GSV) Analysis for Selective State Element Hardening in Modern Microprocessors</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Global Signal Vulnerability (GSV) analysis is a novel method for assessing the susceptibility of modern microprocessor state elements to failures in the field of operation. In order to effectively allocate design for reliability resources, GSV analysis takes into account the high degree of architectural masking exhibited in modern microprocessors and ranks state elements accordingly. The novelty of this method lies in the way this ranking is computed. GSV analysis operates either at the Register Transfer (RT-) or at the Gate-Level, offering increased accuracy in contrast to methods which compute the architectural vulnerability of registers through high-level simulations on performance models. Moreover, it does not rely on extensive Statistical Fault Injection (SFI) campaigns and lengthy executions of workloads to completion in RT- or Gate-Level designs, which would make such analysis prohibitive. Instead, it monitors the behavior of key global microprocessor signals in response to a progressive stuck-at fault injection method during partial workload execution. Experimentation with the Scheduler and Reorder Buffer modules of an Alpha-like microprocessor and a modern Intel microprocessor corroborates that GSV analysis generates a near-optimal ranking, yet is several orders of magnitude faster than existing RT- or Gate-Level approaches.</description><subject>Accuracy</subject><subject>Analytical models</subject><subject>AVF</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>control logic</subject><subject>Design engineering</subject><subject>Faults</subject><subject>GSV</subject><subject>Latches</subject><subject>Mathematical models</subject><subject>Microprocessors</subject><subject>modern microprocessor</subject><subject>Ranking</subject><subject>Registers</subject><subject>reliability</subject><subject>Studies</subject><subject>Transient analysis</subject><subject>vulnerability analysis</subject><subject>Workload</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0M9LwzAUB_AgCs7pyaOXgJeJdOZHkybHUeYmTDxs7lrS7nVkZO1MWmH_vRkTD56-h_fhPd4XoXtKxpQS_bLKx4xQOqYZu0ADKkSWaC3kJRoQQlWieUqu0U0IO0KIZEQP0G7m2tI4vLTbJsa6dw14U1pnuyMezZbrJzyJg2OwAdetx0twUHX2G_CyMx3gqYM9NB2eG7-BxjZbbBv83m7Ax7CVbw--rSCE1odbdFUbF-DuN4fo83W6yufJ4mP2lk8WScVp2iVSgam4UFxBKVSma17quiSKsJIyRUUmUyNTxtOMQG041areACcGuOSgVMqHaHTeG09_9RC6Ym9DBc6ZBto-FJRGmcVFItLHf3TX9j7-GxXhItWKaxbV81nFd0LwUBcHb_fGHyMqTr0Xq7w49V7E3qN-OGsLAH9SMkWEpPwHsnN8sw</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Maniatakos, M.</creator><creator>Tirumurti, C.</creator><creator>Galivanche, R.</creator><creator>Makris, Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121001</creationdate><title>Global Signal Vulnerability (GSV) Analysis for Selective State Element Hardening in Modern Microprocessors</title><author>Maniatakos, M. ; Tirumurti, C. ; Galivanche, R. ; Makris, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-68eac35838eb5879f3b9fb0802b12815764a6423470efa3198fde30ae363e8843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Analytical models</topic><topic>AVF</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>control logic</topic><topic>Design engineering</topic><topic>Faults</topic><topic>GSV</topic><topic>Latches</topic><topic>Mathematical models</topic><topic>Microprocessors</topic><topic>modern microprocessor</topic><topic>Ranking</topic><topic>Registers</topic><topic>reliability</topic><topic>Studies</topic><topic>Transient analysis</topic><topic>vulnerability analysis</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maniatakos, M.</creatorcontrib><creatorcontrib>Tirumurti, C.</creatorcontrib><creatorcontrib>Galivanche, R.</creatorcontrib><creatorcontrib>Makris, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maniatakos, M.</au><au>Tirumurti, C.</au><au>Galivanche, R.</au><au>Makris, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Signal Vulnerability (GSV) Analysis for Selective State Element Hardening in Modern Microprocessors</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>61</volume><issue>10</issue><spage>1361</spage><epage>1370</epage><pages>1361-1370</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Global Signal Vulnerability (GSV) analysis is a novel method for assessing the susceptibility of modern microprocessor state elements to failures in the field of operation. In order to effectively allocate design for reliability resources, GSV analysis takes into account the high degree of architectural masking exhibited in modern microprocessors and ranks state elements accordingly. The novelty of this method lies in the way this ranking is computed. GSV analysis operates either at the Register Transfer (RT-) or at the Gate-Level, offering increased accuracy in contrast to methods which compute the architectural vulnerability of registers through high-level simulations on performance models. Moreover, it does not rely on extensive Statistical Fault Injection (SFI) campaigns and lengthy executions of workloads to completion in RT- or Gate-Level designs, which would make such analysis prohibitive. Instead, it monitors the behavior of key global microprocessor signals in response to a progressive stuck-at fault injection method during partial workload execution. Experimentation with the Scheduler and Reorder Buffer modules of an Alpha-like microprocessor and a modern Intel microprocessor corroborates that GSV analysis generates a near-optimal ranking, yet is several orders of magnitude faster than existing RT- or Gate-Level approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2011.172</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2012-10, Vol.61 (10), p.1361-1370
issn 0018-9340
1557-9956
language eng
recordid cdi_proquest_miscellaneous_1136371575
source IEEE Electronic Library (IEL)
subjects Accuracy
Analytical models
AVF
Computational modeling
Computer simulation
control logic
Design engineering
Faults
GSV
Latches
Mathematical models
Microprocessors
modern microprocessor
Ranking
Registers
reliability
Studies
Transient analysis
vulnerability analysis
Workload
title Global Signal Vulnerability (GSV) Analysis for Selective State Element Hardening in Modern Microprocessors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Signal%20Vulnerability%20(GSV)%20Analysis%20for%20Selective%20State%20Element%20Hardening%20in%20Modern%20Microprocessors&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Maniatakos,%20M.&rft.date=2012-10-01&rft.volume=61&rft.issue=10&rft.spage=1361&rft.epage=1370&rft.pages=1361-1370&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2011.172&rft_dat=%3Cproquest_RIE%3E1136371575%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035498392&rft_id=info:pmid/&rft_ieee_id=6280561&rfr_iscdi=true