Blowing up of Solutions to the Cauchy Problem for the Generalized Zakharov System with Combined Power-Type Nonlinearities

This paper deals with blowing up of solutions to the Cauchy problem for a class of general- ized Zakharov system with combined power-type nonlinearities in two and three space dimensions. On the one hand, for co = +oo we obtain two finite time blow-up results of solutions to the aforementioned 4 ≤ p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2012-09, Vol.28 (9), p.1917-1936
Hauptverfasser: Gan, Zai Hui, Guo, Bo Ling, Guo, Chun Xiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1936
container_issue 9
container_start_page 1917
container_title Acta mathematica Sinica. English series
container_volume 28
creator Gan, Zai Hui
Guo, Bo Ling
Guo, Chun Xiao
description This paper deals with blowing up of solutions to the Cauchy problem for a class of general- ized Zakharov system with combined power-type nonlinearities in two and three space dimensions. On the one hand, for co = +oo we obtain two finite time blow-up results of solutions to the aforementioned 4 ≤ p 〈 N+2/N-2 4 system. One is obtained under the condition a ≥ 0 and 1 + 4/N or a 〈 0 and 1 〈 p 〈 1 + (N = 2,3); the other is established under the condition N = 3, 1 〈 p 〈 N=2/N-2 and α(p - 3) 〉 0. On the other hand, for co 〈 +∞ and α(p - 3) 〉 0, we prove a blow-up result for solutions with negative energy to the Zakharov system under study.
doi_str_mv 10.1007/s10114-012-9238-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136367795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43281439</cqvip_id><sourcerecordid>2730827501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-5be1463c75553041bf04ed201c16f7d9a4d3c3ef0200ec3bc66f011abe462723</originalsourceid><addsrcrecordid>eNp1kcFu3CAQhq0qlZqkfYDeqHLJxS0DBuxjs0rTSlEbKXvqBWF2vCb1wgbsrtynL9tdRVGkHhBo-P4ZxFcU74F-BErVpwQUoCopsLJhvC7rV8UpVLwplQR1cjzXAuSb4iylB0qFaKg8LearIeycX5NpS0JH7sMwjS74RMZAxh7Jwky2n8ldDO2AG9KF-K98gx6jGdwfXJGf5ldvYvhN7uc0Zmbnxp4swqZ1Pt_ehR3GcjlvkXwPfsg1E93oML0tXndmSPjuuJ8Xyy_Xy8XX8vbHzbfF59vSciXGUrQIleRWCSE4raDtaIUrRsGC7NSqMdWKW44dZZSi5a2VsstfYVqsJFOMnxeXh7bbGB4nTKPeuGRxGIzHMCUNwCWXSjUioxcv0IcwRZ8fp4FyJnleMlNwoGwMKUXs9Da6jYlzhvTehT640NmF3rvQdc6wQyZl1q8xPu_8_9CH46A--PVjzj1Nqjir90b5X0GKl7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1032633266</pqid></control><display><type>article</type><title>Blowing up of Solutions to the Cauchy Problem for the Generalized Zakharov System with Combined Power-Type Nonlinearities</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Gan, Zai Hui ; Guo, Bo Ling ; Guo, Chun Xiao</creator><creatorcontrib>Gan, Zai Hui ; Guo, Bo Ling ; Guo, Chun Xiao</creatorcontrib><description>This paper deals with blowing up of solutions to the Cauchy problem for a class of general- ized Zakharov system with combined power-type nonlinearities in two and three space dimensions. On the one hand, for co = +oo we obtain two finite time blow-up results of solutions to the aforementioned 4 ≤ p 〈 N+2/N-2 4 system. One is obtained under the condition a ≥ 0 and 1 + 4/N or a 〈 0 and 1 〈 p 〈 1 + (N = 2,3); the other is established under the condition N = 3, 1 〈 p 〈 N=2/N-2 and α(p - 3) 〉 0. On the other hand, for co 〈 +∞ and α(p - 3) 〉 0, we prove a blow-up result for solutions with negative energy to the Zakharov system under study.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-012-9238-8</identifier><language>eng</language><publisher>Heidelberg: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Blowing ; Cauchy problem ; Cauchy problems ; Cauchy问题 ; Computational mathematics ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Studies ; System theory ; Zakharov系统 ; 功率型 ; 广义 ; 有限时间 ; 爆破解 ; 负能量 ; 非线性</subject><ispartof>Acta mathematica Sinica. English series, 2012-09, Vol.28 (9), p.1917-1936</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-5be1463c75553041bf04ed201c16f7d9a4d3c3ef0200ec3bc66f011abe462723</citedby><cites>FETCH-LOGICAL-c375t-5be1463c75553041bf04ed201c16f7d9a4d3c3ef0200ec3bc66f011abe462723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-012-9238-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-012-9238-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gan, Zai Hui</creatorcontrib><creatorcontrib>Guo, Bo Ling</creatorcontrib><creatorcontrib>Guo, Chun Xiao</creatorcontrib><title>Blowing up of Solutions to the Cauchy Problem for the Generalized Zakharov System with Combined Power-Type Nonlinearities</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>This paper deals with blowing up of solutions to the Cauchy problem for a class of general- ized Zakharov system with combined power-type nonlinearities in two and three space dimensions. On the one hand, for co = +oo we obtain two finite time blow-up results of solutions to the aforementioned 4 ≤ p 〈 N+2/N-2 4 system. One is obtained under the condition a ≥ 0 and 1 + 4/N or a 〈 0 and 1 〈 p 〈 1 + (N = 2,3); the other is established under the condition N = 3, 1 〈 p 〈 N=2/N-2 and α(p - 3) 〉 0. On the other hand, for co 〈 +∞ and α(p - 3) 〉 0, we prove a blow-up result for solutions with negative energy to the Zakharov system under study.</description><subject>Blowing</subject><subject>Cauchy problem</subject><subject>Cauchy problems</subject><subject>Cauchy问题</subject><subject>Computational mathematics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Studies</subject><subject>System theory</subject><subject>Zakharov系统</subject><subject>功率型</subject><subject>广义</subject><subject>有限时间</subject><subject>爆破解</subject><subject>负能量</subject><subject>非线性</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kcFu3CAQhq0qlZqkfYDeqHLJxS0DBuxjs0rTSlEbKXvqBWF2vCb1wgbsrtynL9tdRVGkHhBo-P4ZxFcU74F-BErVpwQUoCopsLJhvC7rV8UpVLwplQR1cjzXAuSb4iylB0qFaKg8LearIeycX5NpS0JH7sMwjS74RMZAxh7Jwky2n8ldDO2AG9KF-K98gx6jGdwfXJGf5ldvYvhN7uc0Zmbnxp4swqZ1Pt_ehR3GcjlvkXwPfsg1E93oML0tXndmSPjuuJ8Xyy_Xy8XX8vbHzbfF59vSciXGUrQIleRWCSE4raDtaIUrRsGC7NSqMdWKW44dZZSi5a2VsstfYVqsJFOMnxeXh7bbGB4nTKPeuGRxGIzHMCUNwCWXSjUioxcv0IcwRZ8fp4FyJnleMlNwoGwMKUXs9Da6jYlzhvTehT640NmF3rvQdc6wQyZl1q8xPu_8_9CH46A--PVjzj1Nqjir90b5X0GKl7M</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Gan, Zai Hui</creator><creator>Guo, Bo Ling</creator><creator>Guo, Chun Xiao</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20120901</creationdate><title>Blowing up of Solutions to the Cauchy Problem for the Generalized Zakharov System with Combined Power-Type Nonlinearities</title><author>Gan, Zai Hui ; Guo, Bo Ling ; Guo, Chun Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-5be1463c75553041bf04ed201c16f7d9a4d3c3ef0200ec3bc66f011abe462723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Blowing</topic><topic>Cauchy problem</topic><topic>Cauchy problems</topic><topic>Cauchy问题</topic><topic>Computational mathematics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Studies</topic><topic>System theory</topic><topic>Zakharov系统</topic><topic>功率型</topic><topic>广义</topic><topic>有限时间</topic><topic>爆破解</topic><topic>负能量</topic><topic>非线性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Zai Hui</creatorcontrib><creatorcontrib>Guo, Bo Ling</creatorcontrib><creatorcontrib>Guo, Chun Xiao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Zai Hui</au><au>Guo, Bo Ling</au><au>Guo, Chun Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blowing up of Solutions to the Cauchy Problem for the Generalized Zakharov System with Combined Power-Type Nonlinearities</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>28</volume><issue>9</issue><spage>1917</spage><epage>1936</epage><pages>1917-1936</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>This paper deals with blowing up of solutions to the Cauchy problem for a class of general- ized Zakharov system with combined power-type nonlinearities in two and three space dimensions. On the one hand, for co = +oo we obtain two finite time blow-up results of solutions to the aforementioned 4 ≤ p 〈 N+2/N-2 4 system. One is obtained under the condition a ≥ 0 and 1 + 4/N or a 〈 0 and 1 〈 p 〈 1 + (N = 2,3); the other is established under the condition N = 3, 1 〈 p 〈 N=2/N-2 and α(p - 3) 〉 0. On the other hand, for co 〈 +∞ and α(p - 3) 〉 0, we prove a blow-up result for solutions with negative energy to the Zakharov system under study.</abstract><cop>Heidelberg</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-012-9238-8</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2012-09, Vol.28 (9), p.1917-1936
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_miscellaneous_1136367795
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Blowing
Cauchy problem
Cauchy problems
Cauchy问题
Computational mathematics
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinearity
Studies
System theory
Zakharov系统
功率型
广义
有限时间
爆破解
负能量
非线性
title Blowing up of Solutions to the Cauchy Problem for the Generalized Zakharov System with Combined Power-Type Nonlinearities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blowing%20up%20of%20Solutions%20to%20the%20Cauchy%20Problem%20for%20the%20Generalized%20Zakharov%20System%20with%20Combined%20Power-Type%20Nonlinearities&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Gan,%20Zai%20Hui&rft.date=2012-09-01&rft.volume=28&rft.issue=9&rft.spage=1917&rft.epage=1936&rft.pages=1917-1936&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-012-9238-8&rft_dat=%3Cproquest_cross%3E2730827501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1032633266&rft_id=info:pmid/&rft_cqvip_id=43281439&rfr_iscdi=true