A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure
The fatigue behavior of two commercial 30MnVS6 steels with similar microstructure and mechanical properties containing inclusions of different sizes were studied in the 10 7 cycles fatigue regime. The scanning electron microscopy (SEM) investigations of the fracture surfaces revealed that the nonmet...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2012-06, Vol.43 (3), p.603-608 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 608 |
---|---|
container_issue | 3 |
container_start_page | 603 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 43 |
creator | Saberifar, S. Mashreghi, A. R. |
description | The fatigue behavior of two commercial 30MnVS6 steels with similar microstructure and mechanical properties containing inclusions of different sizes were studied in the 10
7
cycles fatigue regime. The scanning electron microscopy (SEM) investigations of the fracture surfaces revealed that the nonmetallic inclusions are the main sources of fatigue crack initiation. Calculated according to the Murakami’s model, the stress intensity factors were found to be suitable for the assessment of fatigue behavior. In this article, a new method is proposed for the prediction of the critical inclusion size, using Murakami’s model. According to this method, a critical stress intensity factor was determined for the estimation of the critical inclusion size causing the fatigue failure. |
doi_str_mv | 10.1007/s11663-012-9640-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136365642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660956161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-fd51c4b4c6700a751ba1aa7e6dbd601e6c4fd20b8eff2efac091a7c5099a1a463</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhosoOKc_wLuACN5Uc9okXS_HcDqYH6DiZcjSky2ja2bSCvrrzdwQEbw6Iec5Ly9PkpwCvQRKi6sAIESeUsjSUjCaDvaSHnCWp1CC2I9vWuQpF8APk6MQlpRSUZZ5L3kdknv3jjW5w3bhKmKcJ-0CyaPHyurWuoY4Q0betlarmkwaXXdh8_tkP5FMUVW2mZPWkbFq7bzDOG3deTxODoyqA57sZj95GV8_j27T6cPNZDScppox3qam4qDZjGlRUKoKDjMFShUoqlklKKDQzFQZnQ3QmAyN0rQEVWhOyzKCTOT95GKbu_burcPQypUNGutaNei6IAFykQsuWBbRsz_o0nW-ie0k0IhlAwYbCraU9i4Ej0auvV0p_xEhuVEtt6plVC03quUg3pzvklWIloxXjbbh5zDj5XeHyGVbLsRVM0f_u8F_4V8Tao0p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013628412</pqid></control><display><type>article</type><title>A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure</title><source>SpringerLink Journals</source><creator>Saberifar, S. ; Mashreghi, A. R.</creator><creatorcontrib>Saberifar, S. ; Mashreghi, A. R.</creatorcontrib><description>The fatigue behavior of two commercial 30MnVS6 steels with similar microstructure and mechanical properties containing inclusions of different sizes were studied in the 10
7
cycles fatigue regime. The scanning electron microscopy (SEM) investigations of the fracture surfaces revealed that the nonmetallic inclusions are the main sources of fatigue crack initiation. Calculated according to the Murakami’s model, the stress intensity factors were found to be suitable for the assessment of fatigue behavior. In this article, a new method is proposed for the prediction of the critical inclusion size, using Murakami’s model. According to this method, a critical stress intensity factor was determined for the estimation of the critical inclusion size causing the fatigue failure.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-012-9640-8</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crack initiation ; Exact sciences and technology ; Fatigue ; Fatigue (materials) ; Fatigue failure ; Inclusions ; Materials Science ; Mathematical models ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Microstructure ; Nanotechnology ; Process metallurgy ; Production of metals ; Scanning electron microscopy ; Steel ; Stress intensity factor ; Stress intensity factors ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2012-06, Vol.43 (3), p.603-608</ispartof><rights>THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-fd51c4b4c6700a751ba1aa7e6dbd601e6c4fd20b8eff2efac091a7c5099a1a463</citedby><cites>FETCH-LOGICAL-c445t-fd51c4b4c6700a751ba1aa7e6dbd601e6c4fd20b8eff2efac091a7c5099a1a463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-012-9640-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-012-9640-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25963656$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Saberifar, S.</creatorcontrib><creatorcontrib>Mashreghi, A. R.</creatorcontrib><title>A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>The fatigue behavior of two commercial 30MnVS6 steels with similar microstructure and mechanical properties containing inclusions of different sizes were studied in the 10
7
cycles fatigue regime. The scanning electron microscopy (SEM) investigations of the fracture surfaces revealed that the nonmetallic inclusions are the main sources of fatigue crack initiation. Calculated according to the Murakami’s model, the stress intensity factors were found to be suitable for the assessment of fatigue behavior. In this article, a new method is proposed for the prediction of the critical inclusion size, using Murakami’s model. According to this method, a critical stress intensity factor was determined for the estimation of the critical inclusion size causing the fatigue failure.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crack initiation</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue (materials)</subject><subject>Fatigue failure</subject><subject>Inclusions</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Process metallurgy</subject><subject>Production of metals</subject><subject>Scanning electron microscopy</subject><subject>Steel</subject><subject>Stress intensity factor</subject><subject>Stress intensity factors</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kF1LwzAUhosoOKc_wLuACN5Uc9okXS_HcDqYH6DiZcjSky2ja2bSCvrrzdwQEbw6Iec5Ly9PkpwCvQRKi6sAIESeUsjSUjCaDvaSHnCWp1CC2I9vWuQpF8APk6MQlpRSUZZ5L3kdknv3jjW5w3bhKmKcJ-0CyaPHyurWuoY4Q0betlarmkwaXXdh8_tkP5FMUVW2mZPWkbFq7bzDOG3deTxODoyqA57sZj95GV8_j27T6cPNZDScppox3qam4qDZjGlRUKoKDjMFShUoqlklKKDQzFQZnQ3QmAyN0rQEVWhOyzKCTOT95GKbu_burcPQypUNGutaNei6IAFykQsuWBbRsz_o0nW-ie0k0IhlAwYbCraU9i4Ej0auvV0p_xEhuVEtt6plVC03quUg3pzvklWIloxXjbbh5zDj5XeHyGVbLsRVM0f_u8F_4V8Tao0p</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Saberifar, S.</creator><creator>Mashreghi, A. R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20120601</creationdate><title>A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure</title><author>Saberifar, S. ; Mashreghi, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-fd51c4b4c6700a751ba1aa7e6dbd601e6c4fd20b8eff2efac091a7c5099a1a463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crack initiation</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue (materials)</topic><topic>Fatigue failure</topic><topic>Inclusions</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Process metallurgy</topic><topic>Production of metals</topic><topic>Scanning electron microscopy</topic><topic>Steel</topic><topic>Stress intensity factor</topic><topic>Stress intensity factors</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saberifar, S.</creatorcontrib><creatorcontrib>Mashreghi, A. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saberifar, S.</au><au>Mashreghi, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>43</volume><issue>3</issue><spage>603</spage><epage>608</epage><pages>603-608</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>The fatigue behavior of two commercial 30MnVS6 steels with similar microstructure and mechanical properties containing inclusions of different sizes were studied in the 10
7
cycles fatigue regime. The scanning electron microscopy (SEM) investigations of the fracture surfaces revealed that the nonmetallic inclusions are the main sources of fatigue crack initiation. Calculated according to the Murakami’s model, the stress intensity factors were found to be suitable for the assessment of fatigue behavior. In this article, a new method is proposed for the prediction of the critical inclusion size, using Murakami’s model. According to this method, a critical stress intensity factor was determined for the estimation of the critical inclusion size causing the fatigue failure.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11663-012-9640-8</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2012-06, Vol.43 (3), p.603-608 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136365642 |
source | SpringerLink Journals |
subjects | Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Crack initiation Exact sciences and technology Fatigue Fatigue (materials) Fatigue failure Inclusions Materials Science Mathematical models Mechanical properties Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metallic Materials Metallurgy Metals. Metallurgy Microstructure Nanotechnology Process metallurgy Production of metals Scanning electron microscopy Steel Stress intensity factor Stress intensity factors Structural Materials Surfaces and Interfaces Thin Films |
title | A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20the%20Prediction%20of%20Critical%20Inclusion%20Size%20Leading%20to%20Fatigue%20Failure&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Saberifar,%20S.&rft.date=2012-06-01&rft.volume=43&rft.issue=3&rft.spage=603&rft.epage=608&rft.pages=603-608&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-012-9640-8&rft_dat=%3Cproquest_cross%3E2660956161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1013628412&rft_id=info:pmid/&rfr_iscdi=true |