A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure

The fatigue behavior of two commercial 30MnVS6 steels with similar microstructure and mechanical properties containing inclusions of different sizes were studied in the 10 7 cycles fatigue regime. The scanning electron microscopy (SEM) investigations of the fracture surfaces revealed that the nonmet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2012-06, Vol.43 (3), p.603-608
Hauptverfasser: Saberifar, S., Mashreghi, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 608
container_issue 3
container_start_page 603
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 43
creator Saberifar, S.
Mashreghi, A. R.
description The fatigue behavior of two commercial 30MnVS6 steels with similar microstructure and mechanical properties containing inclusions of different sizes were studied in the 10 7 cycles fatigue regime. The scanning electron microscopy (SEM) investigations of the fracture surfaces revealed that the nonmetallic inclusions are the main sources of fatigue crack initiation. Calculated according to the Murakami’s model, the stress intensity factors were found to be suitable for the assessment of fatigue behavior. In this article, a new method is proposed for the prediction of the critical inclusion size, using Murakami’s model. According to this method, a critical stress intensity factor was determined for the estimation of the critical inclusion size causing the fatigue failure.
doi_str_mv 10.1007/s11663-012-9640-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136365642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660956161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-fd51c4b4c6700a751ba1aa7e6dbd601e6c4fd20b8eff2efac091a7c5099a1a463</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhosoOKc_wLuACN5Uc9okXS_HcDqYH6DiZcjSky2ja2bSCvrrzdwQEbw6Iec5Ly9PkpwCvQRKi6sAIESeUsjSUjCaDvaSHnCWp1CC2I9vWuQpF8APk6MQlpRSUZZ5L3kdknv3jjW5w3bhKmKcJ-0CyaPHyurWuoY4Q0betlarmkwaXXdh8_tkP5FMUVW2mZPWkbFq7bzDOG3deTxODoyqA57sZj95GV8_j27T6cPNZDScppox3qam4qDZjGlRUKoKDjMFShUoqlklKKDQzFQZnQ3QmAyN0rQEVWhOyzKCTOT95GKbu_burcPQypUNGutaNei6IAFykQsuWBbRsz_o0nW-ie0k0IhlAwYbCraU9i4Ej0auvV0p_xEhuVEtt6plVC03quUg3pzvklWIloxXjbbh5zDj5XeHyGVbLsRVM0f_u8F_4V8Tao0p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013628412</pqid></control><display><type>article</type><title>A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure</title><source>SpringerLink Journals</source><creator>Saberifar, S. ; Mashreghi, A. R.</creator><creatorcontrib>Saberifar, S. ; Mashreghi, A. R.</creatorcontrib><description>The fatigue behavior of two commercial 30MnVS6 steels with similar microstructure and mechanical properties containing inclusions of different sizes were studied in the 10 7 cycles fatigue regime. The scanning electron microscopy (SEM) investigations of the fracture surfaces revealed that the nonmetallic inclusions are the main sources of fatigue crack initiation. Calculated according to the Murakami’s model, the stress intensity factors were found to be suitable for the assessment of fatigue behavior. In this article, a new method is proposed for the prediction of the critical inclusion size, using Murakami’s model. According to this method, a critical stress intensity factor was determined for the estimation of the critical inclusion size causing the fatigue failure.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-012-9640-8</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crack initiation ; Exact sciences and technology ; Fatigue ; Fatigue (materials) ; Fatigue failure ; Inclusions ; Materials Science ; Mathematical models ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Microstructure ; Nanotechnology ; Process metallurgy ; Production of metals ; Scanning electron microscopy ; Steel ; Stress intensity factor ; Stress intensity factors ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2012-06, Vol.43 (3), p.603-608</ispartof><rights>THE MINERALS, METALS &amp; MATERIALS SOCIETY and ASM INTERNATIONAL 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-fd51c4b4c6700a751ba1aa7e6dbd601e6c4fd20b8eff2efac091a7c5099a1a463</citedby><cites>FETCH-LOGICAL-c445t-fd51c4b4c6700a751ba1aa7e6dbd601e6c4fd20b8eff2efac091a7c5099a1a463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-012-9640-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-012-9640-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25963656$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Saberifar, S.</creatorcontrib><creatorcontrib>Mashreghi, A. R.</creatorcontrib><title>A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>The fatigue behavior of two commercial 30MnVS6 steels with similar microstructure and mechanical properties containing inclusions of different sizes were studied in the 10 7 cycles fatigue regime. The scanning electron microscopy (SEM) investigations of the fracture surfaces revealed that the nonmetallic inclusions are the main sources of fatigue crack initiation. Calculated according to the Murakami’s model, the stress intensity factors were found to be suitable for the assessment of fatigue behavior. In this article, a new method is proposed for the prediction of the critical inclusion size, using Murakami’s model. According to this method, a critical stress intensity factor was determined for the estimation of the critical inclusion size causing the fatigue failure.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crack initiation</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue (materials)</subject><subject>Fatigue failure</subject><subject>Inclusions</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Process metallurgy</subject><subject>Production of metals</subject><subject>Scanning electron microscopy</subject><subject>Steel</subject><subject>Stress intensity factor</subject><subject>Stress intensity factors</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kF1LwzAUhosoOKc_wLuACN5Uc9okXS_HcDqYH6DiZcjSky2ja2bSCvrrzdwQEbw6Iec5Ly9PkpwCvQRKi6sAIESeUsjSUjCaDvaSHnCWp1CC2I9vWuQpF8APk6MQlpRSUZZ5L3kdknv3jjW5w3bhKmKcJ-0CyaPHyurWuoY4Q0betlarmkwaXXdh8_tkP5FMUVW2mZPWkbFq7bzDOG3deTxODoyqA57sZj95GV8_j27T6cPNZDScppox3qam4qDZjGlRUKoKDjMFShUoqlklKKDQzFQZnQ3QmAyN0rQEVWhOyzKCTOT95GKbu_burcPQypUNGutaNei6IAFykQsuWBbRsz_o0nW-ie0k0IhlAwYbCraU9i4Ej0auvV0p_xEhuVEtt6plVC03quUg3pzvklWIloxXjbbh5zDj5XeHyGVbLsRVM0f_u8F_4V8Tao0p</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Saberifar, S.</creator><creator>Mashreghi, A. R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20120601</creationdate><title>A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure</title><author>Saberifar, S. ; Mashreghi, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-fd51c4b4c6700a751ba1aa7e6dbd601e6c4fd20b8eff2efac091a7c5099a1a463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crack initiation</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue (materials)</topic><topic>Fatigue failure</topic><topic>Inclusions</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Process metallurgy</topic><topic>Production of metals</topic><topic>Scanning electron microscopy</topic><topic>Steel</topic><topic>Stress intensity factor</topic><topic>Stress intensity factors</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saberifar, S.</creatorcontrib><creatorcontrib>Mashreghi, A. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saberifar, S.</au><au>Mashreghi, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>43</volume><issue>3</issue><spage>603</spage><epage>608</epage><pages>603-608</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>The fatigue behavior of two commercial 30MnVS6 steels with similar microstructure and mechanical properties containing inclusions of different sizes were studied in the 10 7 cycles fatigue regime. The scanning electron microscopy (SEM) investigations of the fracture surfaces revealed that the nonmetallic inclusions are the main sources of fatigue crack initiation. Calculated according to the Murakami’s model, the stress intensity factors were found to be suitable for the assessment of fatigue behavior. In this article, a new method is proposed for the prediction of the critical inclusion size, using Murakami’s model. According to this method, a critical stress intensity factor was determined for the estimation of the critical inclusion size causing the fatigue failure.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11663-012-9640-8</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2012-06, Vol.43 (3), p.603-608
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_miscellaneous_1136365642
source SpringerLink Journals
subjects Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crack initiation
Exact sciences and technology
Fatigue
Fatigue (materials)
Fatigue failure
Inclusions
Materials Science
Mathematical models
Mechanical properties
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metallic Materials
Metallurgy
Metals. Metallurgy
Microstructure
Nanotechnology
Process metallurgy
Production of metals
Scanning electron microscopy
Steel
Stress intensity factor
Stress intensity factors
Structural Materials
Surfaces and Interfaces
Thin Films
title A Novel Method for the Prediction of Critical Inclusion Size Leading to Fatigue Failure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20the%20Prediction%20of%20Critical%20Inclusion%20Size%20Leading%20to%20Fatigue%20Failure&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Saberifar,%20S.&rft.date=2012-06-01&rft.volume=43&rft.issue=3&rft.spage=603&rft.epage=608&rft.pages=603-608&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-012-9640-8&rft_dat=%3Cproquest_cross%3E2660956161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1013628412&rft_id=info:pmid/&rfr_iscdi=true