Making objective decisions from subjective data: Detecting irony in customer reviews

The research described in this work focuses on identifying key components for the task of irony detection. By means of analyzing a set of customer reviews, which are considered ironic both in social and mass media, we try to find hints about how to deal with this task from a computational point of v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Decision Support Systems 2012-11, Vol.53 (4), p.754-760
Hauptverfasser: Reyes, Antonio, Rosso, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 4
container_start_page 754
container_title Decision Support Systems
container_volume 53
creator Reyes, Antonio
Rosso, Paolo
description The research described in this work focuses on identifying key components for the task of irony detection. By means of analyzing a set of customer reviews, which are considered ironic both in social and mass media, we try to find hints about how to deal with this task from a computational point of view. Our objective is to gather a set of discriminating elements to represent irony, in particular, the kind of irony expressed in such reviews. To this end, we built a freely available data set with ironic reviews collected from Amazon. Such reviews were posted on the basis of an online viral effect; i.e. contents that trigger a chain reaction in people. The findings were assessed employing three classifiers. Initial results are largely positive, and provide valuable insights into the subjective issues of language facing tasks such as sentiment analysis, opinion mining and decision making.
doi_str_mv 10.1016/j.dss.2012.05.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136360742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167923612001388</els_id><sourcerecordid>1136360742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-1242f5a4efe3226d344ea016b60ef61075b577b08f6748da6862cb126991a1ec3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8BL15a89EkXT3J-gkrXtZzSNOppG6bNWlX9t-bZQXBg6dhmOcdZh6EzinJKaHyqs3rGHNGKMuJyAlTB2hCS8UzoWbqEE0So7IZ4_IYncTYEiK5KuUELV_Mh-vfsa9asIPbAK7Buuh8H3ETfIfj-Dsxg7nGdzDs-pRxwfdb7Hpsxzj4DgIOsHHwFU_RUWNWEc5-6hS9Pdwv50_Z4vXxeX67yGwh1ZBRVrBGmAIa4IzJmhcFmHRoJQk0khIlKqFURcpGqqKsjSwlsxVlcjajhoLlU3S537sO_nOEOOjORQurlenBj1FTyiWXRBUsoRd_0NaPoU_XaUq4UJSXTCSK7ikbfIwBGr0OrjNhmyC986xbnTzrnWdNhE6eU-Zmn4H0aXo_6Ggd9BZqF5IoXXv3T_ob_-GFHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035713825</pqid></control><display><type>article</type><title>Making objective decisions from subjective data: Detecting irony in customer reviews</title><source>Elsevier ScienceDirect Journals</source><creator>Reyes, Antonio ; Rosso, Paolo</creator><creatorcontrib>Reyes, Antonio ; Rosso, Paolo</creatorcontrib><description>The research described in this work focuses on identifying key components for the task of irony detection. By means of analyzing a set of customer reviews, which are considered ironic both in social and mass media, we try to find hints about how to deal with this task from a computational point of view. Our objective is to gather a set of discriminating elements to represent irony, in particular, the kind of irony expressed in such reviews. To this end, we built a freely available data set with ironic reviews collected from Amazon. Such reviews were posted on the basis of an online viral effect; i.e. contents that trigger a chain reaction in people. The findings were assessed employing three classifiers. Initial results are largely positive, and provide valuable insights into the subjective issues of language facing tasks such as sentiment analysis, opinion mining and decision making.</description><identifier>ISSN: 0167-9236</identifier><identifier>EISSN: 1873-5797</identifier><identifier>DOI: 10.1016/j.dss.2012.05.027</identifier><identifier>CODEN: DSSYDK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Classifiers ; Computation ; Data mining ; Decision making ; Decision support systems ; Decisions ; Electronic commerce ; Irony detection ; Natural language processing ; On-line systems ; Online ; Product reviews ; Sentiment analysis ; Social networks ; Studies ; Tasks ; Web text analysis</subject><ispartof>Decision Support Systems, 2012-11, Vol.53 (4), p.754-760</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-1242f5a4efe3226d344ea016b60ef61075b577b08f6748da6862cb126991a1ec3</citedby><cites>FETCH-LOGICAL-c467t-1242f5a4efe3226d344ea016b60ef61075b577b08f6748da6862cb126991a1ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167923612001388$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Reyes, Antonio</creatorcontrib><creatorcontrib>Rosso, Paolo</creatorcontrib><title>Making objective decisions from subjective data: Detecting irony in customer reviews</title><title>Decision Support Systems</title><description>The research described in this work focuses on identifying key components for the task of irony detection. By means of analyzing a set of customer reviews, which are considered ironic both in social and mass media, we try to find hints about how to deal with this task from a computational point of view. Our objective is to gather a set of discriminating elements to represent irony, in particular, the kind of irony expressed in such reviews. To this end, we built a freely available data set with ironic reviews collected from Amazon. Such reviews were posted on the basis of an online viral effect; i.e. contents that trigger a chain reaction in people. The findings were assessed employing three classifiers. Initial results are largely positive, and provide valuable insights into the subjective issues of language facing tasks such as sentiment analysis, opinion mining and decision making.</description><subject>Classifiers</subject><subject>Computation</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Decisions</subject><subject>Electronic commerce</subject><subject>Irony detection</subject><subject>Natural language processing</subject><subject>On-line systems</subject><subject>Online</subject><subject>Product reviews</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Studies</subject><subject>Tasks</subject><subject>Web text analysis</subject><issn>0167-9236</issn><issn>1873-5797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8BL15a89EkXT3J-gkrXtZzSNOppG6bNWlX9t-bZQXBg6dhmOcdZh6EzinJKaHyqs3rGHNGKMuJyAlTB2hCS8UzoWbqEE0So7IZ4_IYncTYEiK5KuUELV_Mh-vfsa9asIPbAK7Buuh8H3ETfIfj-Dsxg7nGdzDs-pRxwfdb7Hpsxzj4DgIOsHHwFU_RUWNWEc5-6hS9Pdwv50_Z4vXxeX67yGwh1ZBRVrBGmAIa4IzJmhcFmHRoJQk0khIlKqFURcpGqqKsjSwlsxVlcjajhoLlU3S537sO_nOEOOjORQurlenBj1FTyiWXRBUsoRd_0NaPoU_XaUq4UJSXTCSK7ikbfIwBGr0OrjNhmyC986xbnTzrnWdNhE6eU-Zmn4H0aXo_6Ggd9BZqF5IoXXv3T_ob_-GFHQ</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Reyes, Antonio</creator><creator>Rosso, Paolo</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>Making objective decisions from subjective data: Detecting irony in customer reviews</title><author>Reyes, Antonio ; Rosso, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-1242f5a4efe3226d344ea016b60ef61075b577b08f6748da6862cb126991a1ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classifiers</topic><topic>Computation</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Decisions</topic><topic>Electronic commerce</topic><topic>Irony detection</topic><topic>Natural language processing</topic><topic>On-line systems</topic><topic>Online</topic><topic>Product reviews</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Studies</topic><topic>Tasks</topic><topic>Web text analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes, Antonio</creatorcontrib><creatorcontrib>Rosso, Paolo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision Support Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes, Antonio</au><au>Rosso, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making objective decisions from subjective data: Detecting irony in customer reviews</atitle><jtitle>Decision Support Systems</jtitle><date>2012-11</date><risdate>2012</risdate><volume>53</volume><issue>4</issue><spage>754</spage><epage>760</epage><pages>754-760</pages><issn>0167-9236</issn><eissn>1873-5797</eissn><coden>DSSYDK</coden><abstract>The research described in this work focuses on identifying key components for the task of irony detection. By means of analyzing a set of customer reviews, which are considered ironic both in social and mass media, we try to find hints about how to deal with this task from a computational point of view. Our objective is to gather a set of discriminating elements to represent irony, in particular, the kind of irony expressed in such reviews. To this end, we built a freely available data set with ironic reviews collected from Amazon. Such reviews were posted on the basis of an online viral effect; i.e. contents that trigger a chain reaction in people. The findings were assessed employing three classifiers. Initial results are largely positive, and provide valuable insights into the subjective issues of language facing tasks such as sentiment analysis, opinion mining and decision making.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dss.2012.05.027</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9236
ispartof Decision Support Systems, 2012-11, Vol.53 (4), p.754-760
issn 0167-9236
1873-5797
language eng
recordid cdi_proquest_miscellaneous_1136360742
source Elsevier ScienceDirect Journals
subjects Classifiers
Computation
Data mining
Decision making
Decision support systems
Decisions
Electronic commerce
Irony detection
Natural language processing
On-line systems
Online
Product reviews
Sentiment analysis
Social networks
Studies
Tasks
Web text analysis
title Making objective decisions from subjective data: Detecting irony in customer reviews
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20objective%20decisions%20from%20subjective%20data:%20Detecting%20irony%20in%20customer%20reviews&rft.jtitle=Decision%20Support%20Systems&rft.au=Reyes,%20Antonio&rft.date=2012-11&rft.volume=53&rft.issue=4&rft.spage=754&rft.epage=760&rft.pages=754-760&rft.issn=0167-9236&rft.eissn=1873-5797&rft.coden=DSSYDK&rft_id=info:doi/10.1016/j.dss.2012.05.027&rft_dat=%3Cproquest_cross%3E1136360742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035713825&rft_id=info:pmid/&rft_els_id=S0167923612001388&rfr_iscdi=true