Microelastic wave field signatures and their implications for microstructure identification

This work combines closed-form and computational analyses to elucidate the dynamic properties, termed signatures, of waves propagating through solids defined by the theory of elasticity with microstructure and the potential of such properties to identify microstructure evolution over a material’s li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2012-11, Vol.49 (22), p.3148-3157
Hauptverfasser: Steven Greene, M., Gonella, Stefano, Liu, Wing Kam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work combines closed-form and computational analyses to elucidate the dynamic properties, termed signatures, of waves propagating through solids defined by the theory of elasticity with microstructure and the potential of such properties to identify microstructure evolution over a material’s lifetime. First, the study presents analytical dispersion relations and frequency-dependent velocities of waves propagating in microelastic solids. A detailed parametric analysis of the results show that elastic solids with microstructure recover traditional gradient elasticity under certain conditions but demonstrate a higher degree of flexibility in adapting to observed wave forms across a wide frequency spectrum. In addition, a set of simulations demonstrates the ability of the model to quantify the presence of damage, just another type of microstructure, through fitting of the model parameters, especially the one associated with the characteristic length scale of the underlying microstructure, to an explicit geometric representation of voids in different damage states.
ISSN:0020-7683
1879-2146
DOI:10.1016/j.ijsolstr.2012.06.011