Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation

The bone–cartilage, or osteochondral, interface resists remarkably high shear stresses and rarely fails, yet its mechanical characteristics are largely unknown. A complete understanding of this hierarchical system requires mechanical-property information at the length scales of both the interface an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2012-12, Vol.8 (12), p.4389-4396
Hauptverfasser: Campbell, Sara E., Ferguson, Virginia L., Hurley, Donna C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4396
container_issue 12
container_start_page 4389
container_title Acta biomaterialia
container_volume 8
creator Campbell, Sara E.
Ferguson, Virginia L.
Hurley, Donna C.
description The bone–cartilage, or osteochondral, interface resists remarkably high shear stresses and rarely fails, yet its mechanical characteristics are largely unknown. A complete understanding of this hierarchical system requires mechanical-property information at the length scales of both the interface and the connecting tissues. Here, we combined nanoindentation and atomic force microscopy (AFM) methods to investigate the multiscale mechanical properties across the osteochondral region. The nanoindentation modulus M ranged from that of the subchondral bone (M=22.8±1.8GPa) to that of hyaline articular cartilage embedded in PMMA (M=5.7±1.0GPa) across a narrow transition region
doi_str_mv 10.1016/j.actbio.2012.07.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1126611138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706112003625</els_id><sourcerecordid>1126611138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-86406eca03e3455e2cee48719cb3cf4f46c69322c2d2f86e7f6a4f7d9b6fcbb03</originalsourceid><addsrcrecordid>eNp9kE1vGyEQQFGVqvlo_0FVcexlN8BiwJdKVZQ2kaz00p4ROzvUWF7YAG6Uf18spz3mMoyYN8zwCPnIWc8ZV9e73kEdQ-oF46JnumdSvCEX3GjT6ZUyZy3XUnSaKX5OLkvZMTYYLsw7ci6E0dpwc0EeH1xMM8LWxQBuT2e3LCH-psnTukWaSsUE2xSn3IohVszeAdKnULcUUqxtB5qxpOhiu_YptzgHyKlAWp6pixNtpRTihA2uIcX35K13-4IfXs4r8uvb7c-bu27z4_v9zddNB4MStTNKMoXg2ICDXK1QAKI0mq9hHMBLLxWo9SAEiEl4o1B75aTX03pUHsaRDVfk8-ndJafHA5Zq51AA93sXMR2K5VwoxTkfTEPlCT3uXTJ6u-Qwu_xsObNH2XZnT7LtUbZl2jbZre3Ty4TDOOP0v-mf3QZ8OQHY_vknYLYFAjZRU8gI1U4pvD7hL5c6lVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1126611138</pqid></control><display><type>article</type><title>Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Campbell, Sara E. ; Ferguson, Virginia L. ; Hurley, Donna C.</creator><creatorcontrib>Campbell, Sara E. ; Ferguson, Virginia L. ; Hurley, Donna C.</creatorcontrib><description>The bone–cartilage, or osteochondral, interface resists remarkably high shear stresses and rarely fails, yet its mechanical characteristics are largely unknown. A complete understanding of this hierarchical system requires mechanical-property information at the length scales of both the interface and the connecting tissues. Here, we combined nanoindentation and atomic force microscopy (AFM) methods to investigate the multiscale mechanical properties across the osteochondral region. The nanoindentation modulus M ranged from that of the subchondral bone (M=22.8±1.8GPa) to that of hyaline articular cartilage embedded in PMMA (M=5.7±1.0GPa) across a narrow transition region &lt;5μm wide. Contact resonance force microscopy (CR-FM), which measures the frequency and quality factor of the AFM cantilever’s vibrational resonance in contact mode, was used to determine the relative storage modulus and loss tangent of the osteochondral interface. With better spatial resolution than nanoindentation, CR-FM measurements indicated an even narrower interface width of 2.3±1.2μm. Furthermore, CR-FM revealed a 24% increase in the viscoelastic loss tangent from the articular calcified cartilage into the PMMA-embedded hyaline articular cartilage. Quantitative backscattered electron imaging provided complementary measurement of mineral content. Our results provide insight into the multiscale functionality of the osteochondral interface that will advance understanding of disease states such as osteoarthritis and aid in the development of biomimetic interfaces.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2012.07.042</identifier><identifier>PMID: 22877818</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>AFM ; Animals ; Bone ; Cartilage ; Cartilage, Articular - metabolism ; Cartilage, Articular - pathology ; Femur - metabolism ; Femur - pathology ; Hyalin - metabolism ; Microscopy, Atomic Force ; Nanoindentation ; Osteoarthritis - metabolism ; Osteoarthritis - pathology ; Osteochondral ; Rabbits ; Surface Properties</subject><ispartof>Acta biomaterialia, 2012-12, Vol.8 (12), p.4389-4396</ispartof><rights>2012</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-86406eca03e3455e2cee48719cb3cf4f46c69322c2d2f86e7f6a4f7d9b6fcbb03</citedby><cites>FETCH-LOGICAL-c362t-86406eca03e3455e2cee48719cb3cf4f46c69322c2d2f86e7f6a4f7d9b6fcbb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706112003625$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22877818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campbell, Sara E.</creatorcontrib><creatorcontrib>Ferguson, Virginia L.</creatorcontrib><creatorcontrib>Hurley, Donna C.</creatorcontrib><title>Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The bone–cartilage, or osteochondral, interface resists remarkably high shear stresses and rarely fails, yet its mechanical characteristics are largely unknown. A complete understanding of this hierarchical system requires mechanical-property information at the length scales of both the interface and the connecting tissues. Here, we combined nanoindentation and atomic force microscopy (AFM) methods to investigate the multiscale mechanical properties across the osteochondral region. The nanoindentation modulus M ranged from that of the subchondral bone (M=22.8±1.8GPa) to that of hyaline articular cartilage embedded in PMMA (M=5.7±1.0GPa) across a narrow transition region &lt;5μm wide. Contact resonance force microscopy (CR-FM), which measures the frequency and quality factor of the AFM cantilever’s vibrational resonance in contact mode, was used to determine the relative storage modulus and loss tangent of the osteochondral interface. With better spatial resolution than nanoindentation, CR-FM measurements indicated an even narrower interface width of 2.3±1.2μm. Furthermore, CR-FM revealed a 24% increase in the viscoelastic loss tangent from the articular calcified cartilage into the PMMA-embedded hyaline articular cartilage. Quantitative backscattered electron imaging provided complementary measurement of mineral content. Our results provide insight into the multiscale functionality of the osteochondral interface that will advance understanding of disease states such as osteoarthritis and aid in the development of biomimetic interfaces.</description><subject>AFM</subject><subject>Animals</subject><subject>Bone</subject><subject>Cartilage</subject><subject>Cartilage, Articular - metabolism</subject><subject>Cartilage, Articular - pathology</subject><subject>Femur - metabolism</subject><subject>Femur - pathology</subject><subject>Hyalin - metabolism</subject><subject>Microscopy, Atomic Force</subject><subject>Nanoindentation</subject><subject>Osteoarthritis - metabolism</subject><subject>Osteoarthritis - pathology</subject><subject>Osteochondral</subject><subject>Rabbits</subject><subject>Surface Properties</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1vGyEQQFGVqvlo_0FVcexlN8BiwJdKVZQ2kaz00p4ROzvUWF7YAG6Uf18spz3mMoyYN8zwCPnIWc8ZV9e73kEdQ-oF46JnumdSvCEX3GjT6ZUyZy3XUnSaKX5OLkvZMTYYLsw7ci6E0dpwc0EeH1xMM8LWxQBuT2e3LCH-psnTukWaSsUE2xSn3IohVszeAdKnULcUUqxtB5qxpOhiu_YptzgHyKlAWp6pixNtpRTihA2uIcX35K13-4IfXs4r8uvb7c-bu27z4_v9zddNB4MStTNKMoXg2ICDXK1QAKI0mq9hHMBLLxWo9SAEiEl4o1B75aTX03pUHsaRDVfk8-ndJafHA5Zq51AA93sXMR2K5VwoxTkfTEPlCT3uXTJ6u-Qwu_xsObNH2XZnT7LtUbZl2jbZre3Ty4TDOOP0v-mf3QZ8OQHY_vknYLYFAjZRU8gI1U4pvD7hL5c6lVY</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Campbell, Sara E.</creator><creator>Ferguson, Virginia L.</creator><creator>Hurley, Donna C.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20121201</creationdate><title>Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation</title><author>Campbell, Sara E. ; Ferguson, Virginia L. ; Hurley, Donna C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-86406eca03e3455e2cee48719cb3cf4f46c69322c2d2f86e7f6a4f7d9b6fcbb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AFM</topic><topic>Animals</topic><topic>Bone</topic><topic>Cartilage</topic><topic>Cartilage, Articular - metabolism</topic><topic>Cartilage, Articular - pathology</topic><topic>Femur - metabolism</topic><topic>Femur - pathology</topic><topic>Hyalin - metabolism</topic><topic>Microscopy, Atomic Force</topic><topic>Nanoindentation</topic><topic>Osteoarthritis - metabolism</topic><topic>Osteoarthritis - pathology</topic><topic>Osteochondral</topic><topic>Rabbits</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campbell, Sara E.</creatorcontrib><creatorcontrib>Ferguson, Virginia L.</creatorcontrib><creatorcontrib>Hurley, Donna C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, Sara E.</au><au>Ferguson, Virginia L.</au><au>Hurley, Donna C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>8</volume><issue>12</issue><spage>4389</spage><epage>4396</epage><pages>4389-4396</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The bone–cartilage, or osteochondral, interface resists remarkably high shear stresses and rarely fails, yet its mechanical characteristics are largely unknown. A complete understanding of this hierarchical system requires mechanical-property information at the length scales of both the interface and the connecting tissues. Here, we combined nanoindentation and atomic force microscopy (AFM) methods to investigate the multiscale mechanical properties across the osteochondral region. The nanoindentation modulus M ranged from that of the subchondral bone (M=22.8±1.8GPa) to that of hyaline articular cartilage embedded in PMMA (M=5.7±1.0GPa) across a narrow transition region &lt;5μm wide. Contact resonance force microscopy (CR-FM), which measures the frequency and quality factor of the AFM cantilever’s vibrational resonance in contact mode, was used to determine the relative storage modulus and loss tangent of the osteochondral interface. With better spatial resolution than nanoindentation, CR-FM measurements indicated an even narrower interface width of 2.3±1.2μm. Furthermore, CR-FM revealed a 24% increase in the viscoelastic loss tangent from the articular calcified cartilage into the PMMA-embedded hyaline articular cartilage. Quantitative backscattered electron imaging provided complementary measurement of mineral content. Our results provide insight into the multiscale functionality of the osteochondral interface that will advance understanding of disease states such as osteoarthritis and aid in the development of biomimetic interfaces.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22877818</pmid><doi>10.1016/j.actbio.2012.07.042</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2012-12, Vol.8 (12), p.4389-4396
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_1126611138
source MEDLINE; Elsevier ScienceDirect Journals
subjects AFM
Animals
Bone
Cartilage
Cartilage, Articular - metabolism
Cartilage, Articular - pathology
Femur - metabolism
Femur - pathology
Hyalin - metabolism
Microscopy, Atomic Force
Nanoindentation
Osteoarthritis - metabolism
Osteoarthritis - pathology
Osteochondral
Rabbits
Surface Properties
title Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanomechanical%20mapping%20of%20the%20osteochondral%20interface%20with%20contact%20resonance%20force%20microscopy%20and%20nanoindentation&rft.jtitle=Acta%20biomaterialia&rft.au=Campbell,%20Sara%20E.&rft.date=2012-12-01&rft.volume=8&rft.issue=12&rft.spage=4389&rft.epage=4396&rft.pages=4389-4396&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2012.07.042&rft_dat=%3Cproquest_cross%3E1126611138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1126611138&rft_id=info:pmid/22877818&rft_els_id=S1742706112003625&rfr_iscdi=true