An overview on standard statistical methods for assessing exposure-outcome link in survival analysis (Part II): the Kaplan-Meier analysis and the Cox regression method

The Kaplan-Meier and the Cox regression methods are the most used statistical techniques for performing “time to event analysis” in epidemiological and clinical research. The Kaplan-Meier analysis allows to build up one or more survival curves describing the occurrence of the outcome of interest ove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging clinical and experimental research 2012-06, Vol.24 (3), p.203-206
Hauptverfasser: ElHafeez, Samar Abd, Torino, Claudia, D’Arrigo, Graziella, Bolignano, Davide, Provenzano, Fabio, Mattace-Raso, Francesco, Zoccali, Carmine, Tripepi, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 3
container_start_page 203
container_title Aging clinical and experimental research
container_volume 24
creator ElHafeez, Samar Abd
Torino, Claudia
D’Arrigo, Graziella
Bolignano, Davide
Provenzano, Fabio
Mattace-Raso, Francesco
Zoccali, Carmine
Tripepi, Giovanni
description The Kaplan-Meier and the Cox regression methods are the most used statistical techniques for performing “time to event analysis” in epidemiological and clinical research. The Kaplan-Meier analysis allows to build up one or more survival curves describing the occurrence of the outcome of interest over time according to the presence/absence of one or more exposures. The Cox regression method models the relationship between a specific exposure (either a continuous one like age, and systolic blood pressure or a categorical one like diabetes, degree of obesity, etc.) and the occurrence of a given outcome taking into account multiple confounders and/or predictors.
doi_str_mv 10.1007/BF03325249
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1126598070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1126598070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-9f55ef1f41754f640e77bcdaaccff3a77244ed67e370a13569ec89517f144f463</originalsourceid><addsrcrecordid>eNptkU9v1DAQxS0Eon_gwgdAlrgUUMAT23HCraworCiCA5wjNxlvXZJ48Tjb9hPxNfGyhZUQJ4_0fn5vRo-xJyBegRDm9dszIWWpS9XcY4dgSlHUEpr7edaNKkRVmQN2RHQlhIIsPGQHpQRQWplD9vN04mGDcePxmoeJU7JTb2O_HZKn5Ds78BHTZeiJuxC5JUIiP6043qwDzRGLMKcujMgHP33nPnvM2W6T_9nJDrfkiZ98sTHx5fL5G54ukX-068FOxSf0GPdQDv6tLsINj7iK25i80S78EXvg7ED4-O49Zt_O3n1dfCjOP79fLk7Pi05qSEXjtEYHToHRylVKoDEXXW9t1zknrTGlUthXBqURFqSuGuzqRoNxoJRTlTxmJzvfdQw_ZqTUjp46HPK-GGZqAcpKN7UwIqPP_kGvwhzzNdSWUtVNWQPoTL3YUV0MRBFdu45-tPG2BdFu62v39WX46Z3lfDFi_xf901cGXu4AytK0wrjP_I_dL9mQpGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348928115</pqid></control><display><type>article</type><title>An overview on standard statistical methods for assessing exposure-outcome link in survival analysis (Part II): the Kaplan-Meier analysis and the Cox regression method</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>ElHafeez, Samar Abd ; Torino, Claudia ; D’Arrigo, Graziella ; Bolignano, Davide ; Provenzano, Fabio ; Mattace-Raso, Francesco ; Zoccali, Carmine ; Tripepi, Giovanni</creator><creatorcontrib>ElHafeez, Samar Abd ; Torino, Claudia ; D’Arrigo, Graziella ; Bolignano, Davide ; Provenzano, Fabio ; Mattace-Raso, Francesco ; Zoccali, Carmine ; Tripepi, Giovanni</creatorcontrib><description>The Kaplan-Meier and the Cox regression methods are the most used statistical techniques for performing “time to event analysis” in epidemiological and clinical research. The Kaplan-Meier analysis allows to build up one or more survival curves describing the occurrence of the outcome of interest over time according to the presence/absence of one or more exposures. The Cox regression method models the relationship between a specific exposure (either a continuous one like age, and systolic blood pressure or a categorical one like diabetes, degree of obesity, etc.) and the occurrence of a given outcome taking into account multiple confounders and/or predictors.</description><identifier>ISSN: 1594-0667</identifier><identifier>EISSN: 1720-8319</identifier><identifier>DOI: 10.1007/BF03325249</identifier><identifier>PMID: 23114547</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Geriatrics/Gerontology ; Humans ; Kaplan-Meier Estimate ; Medicine ; Medicine &amp; Public Health ; Outcome Assessment (Health Care) ; Proportional Hazards Models ; Regression Analysis ; Review Article ; Survival Analysis ; Time Factors</subject><ispartof>Aging clinical and experimental research, 2012-06, Vol.24 (3), p.203-206</ispartof><rights>Springer Internal Publishing Switzerland 2012</rights><rights>Springer Internal Publishing Switzerland 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-9f55ef1f41754f640e77bcdaaccff3a77244ed67e370a13569ec89517f144f463</citedby><cites>FETCH-LOGICAL-c351t-9f55ef1f41754f640e77bcdaaccff3a77244ed67e370a13569ec89517f144f463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BF03325249$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BF03325249$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23114547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ElHafeez, Samar Abd</creatorcontrib><creatorcontrib>Torino, Claudia</creatorcontrib><creatorcontrib>D’Arrigo, Graziella</creatorcontrib><creatorcontrib>Bolignano, Davide</creatorcontrib><creatorcontrib>Provenzano, Fabio</creatorcontrib><creatorcontrib>Mattace-Raso, Francesco</creatorcontrib><creatorcontrib>Zoccali, Carmine</creatorcontrib><creatorcontrib>Tripepi, Giovanni</creatorcontrib><title>An overview on standard statistical methods for assessing exposure-outcome link in survival analysis (Part II): the Kaplan-Meier analysis and the Cox regression method</title><title>Aging clinical and experimental research</title><addtitle>Aging Clin Exp Res</addtitle><addtitle>Aging Clin Exp Res</addtitle><description>The Kaplan-Meier and the Cox regression methods are the most used statistical techniques for performing “time to event analysis” in epidemiological and clinical research. The Kaplan-Meier analysis allows to build up one or more survival curves describing the occurrence of the outcome of interest over time according to the presence/absence of one or more exposures. The Cox regression method models the relationship between a specific exposure (either a continuous one like age, and systolic blood pressure or a categorical one like diabetes, degree of obesity, etc.) and the occurrence of a given outcome taking into account multiple confounders and/or predictors.</description><subject>Geriatrics/Gerontology</subject><subject>Humans</subject><subject>Kaplan-Meier Estimate</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Outcome Assessment (Health Care)</subject><subject>Proportional Hazards Models</subject><subject>Regression Analysis</subject><subject>Review Article</subject><subject>Survival Analysis</subject><subject>Time Factors</subject><issn>1594-0667</issn><issn>1720-8319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNptkU9v1DAQxS0Eon_gwgdAlrgUUMAT23HCraworCiCA5wjNxlvXZJ48Tjb9hPxNfGyhZUQJ4_0fn5vRo-xJyBegRDm9dszIWWpS9XcY4dgSlHUEpr7edaNKkRVmQN2RHQlhIIsPGQHpQRQWplD9vN04mGDcePxmoeJU7JTb2O_HZKn5Ds78BHTZeiJuxC5JUIiP6043qwDzRGLMKcujMgHP33nPnvM2W6T_9nJDrfkiZ98sTHx5fL5G54ukX-068FOxSf0GPdQDv6tLsINj7iK25i80S78EXvg7ED4-O49Zt_O3n1dfCjOP79fLk7Pi05qSEXjtEYHToHRylVKoDEXXW9t1zknrTGlUthXBqURFqSuGuzqRoNxoJRTlTxmJzvfdQw_ZqTUjp46HPK-GGZqAcpKN7UwIqPP_kGvwhzzNdSWUtVNWQPoTL3YUV0MRBFdu45-tPG2BdFu62v39WX46Z3lfDFi_xf901cGXu4AytK0wrjP_I_dL9mQpGE</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>ElHafeez, Samar Abd</creator><creator>Torino, Claudia</creator><creator>D’Arrigo, Graziella</creator><creator>Bolignano, Davide</creator><creator>Provenzano, Fabio</creator><creator>Mattace-Raso, Francesco</creator><creator>Zoccali, Carmine</creator><creator>Tripepi, Giovanni</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20120601</creationdate><title>An overview on standard statistical methods for assessing exposure-outcome link in survival analysis (Part II): the Kaplan-Meier analysis and the Cox regression method</title><author>ElHafeez, Samar Abd ; Torino, Claudia ; D’Arrigo, Graziella ; Bolignano, Davide ; Provenzano, Fabio ; Mattace-Raso, Francesco ; Zoccali, Carmine ; Tripepi, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-9f55ef1f41754f640e77bcdaaccff3a77244ed67e370a13569ec89517f144f463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Geriatrics/Gerontology</topic><topic>Humans</topic><topic>Kaplan-Meier Estimate</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Outcome Assessment (Health Care)</topic><topic>Proportional Hazards Models</topic><topic>Regression Analysis</topic><topic>Review Article</topic><topic>Survival Analysis</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ElHafeez, Samar Abd</creatorcontrib><creatorcontrib>Torino, Claudia</creatorcontrib><creatorcontrib>D’Arrigo, Graziella</creatorcontrib><creatorcontrib>Bolignano, Davide</creatorcontrib><creatorcontrib>Provenzano, Fabio</creatorcontrib><creatorcontrib>Mattace-Raso, Francesco</creatorcontrib><creatorcontrib>Zoccali, Carmine</creatorcontrib><creatorcontrib>Tripepi, Giovanni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Aging clinical and experimental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ElHafeez, Samar Abd</au><au>Torino, Claudia</au><au>D’Arrigo, Graziella</au><au>Bolignano, Davide</au><au>Provenzano, Fabio</au><au>Mattace-Raso, Francesco</au><au>Zoccali, Carmine</au><au>Tripepi, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An overview on standard statistical methods for assessing exposure-outcome link in survival analysis (Part II): the Kaplan-Meier analysis and the Cox regression method</atitle><jtitle>Aging clinical and experimental research</jtitle><stitle>Aging Clin Exp Res</stitle><addtitle>Aging Clin Exp Res</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>24</volume><issue>3</issue><spage>203</spage><epage>206</epage><pages>203-206</pages><issn>1594-0667</issn><eissn>1720-8319</eissn><abstract>The Kaplan-Meier and the Cox regression methods are the most used statistical techniques for performing “time to event analysis” in epidemiological and clinical research. The Kaplan-Meier analysis allows to build up one or more survival curves describing the occurrence of the outcome of interest over time according to the presence/absence of one or more exposures. The Cox regression method models the relationship between a specific exposure (either a continuous one like age, and systolic blood pressure or a categorical one like diabetes, degree of obesity, etc.) and the occurrence of a given outcome taking into account multiple confounders and/or predictors.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>23114547</pmid><doi>10.1007/BF03325249</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1594-0667
ispartof Aging clinical and experimental research, 2012-06, Vol.24 (3), p.203-206
issn 1594-0667
1720-8319
language eng
recordid cdi_proquest_miscellaneous_1126598070
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Geriatrics/Gerontology
Humans
Kaplan-Meier Estimate
Medicine
Medicine & Public Health
Outcome Assessment (Health Care)
Proportional Hazards Models
Regression Analysis
Review Article
Survival Analysis
Time Factors
title An overview on standard statistical methods for assessing exposure-outcome link in survival analysis (Part II): the Kaplan-Meier analysis and the Cox regression method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20overview%20on%20standard%20statistical%20methods%20for%20assessing%20exposure-outcome%20link%20in%20survival%20analysis%20(Part%20II):%20the%20Kaplan-Meier%20analysis%20and%20the%20Cox%20regression%20method&rft.jtitle=Aging%20clinical%20and%20experimental%20research&rft.au=ElHafeez,%20Samar%20Abd&rft.date=2012-06-01&rft.volume=24&rft.issue=3&rft.spage=203&rft.epage=206&rft.pages=203-206&rft.issn=1594-0667&rft.eissn=1720-8319&rft_id=info:doi/10.1007/BF03325249&rft_dat=%3Cproquest_cross%3E1126598070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348928115&rft_id=info:pmid/23114547&rfr_iscdi=true