A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects
Abstract Scaffold fixation represents one of the most serious challenges in osteochondral defect surgery. Indeed, the fixation should firmly hold the scaffold in the implanted position as well as it should guaranty stable bone/scaffold interface for efficient tissue regeneration. Nonetheless success...
Gespeichert in:
Veröffentlicht in: | Medical engineering & physics 2012-11, Vol.34 (9), p.1287-1293 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1293 |
---|---|
container_issue | 9 |
container_start_page | 1287 |
container_title | Medical engineering & physics |
container_volume | 34 |
creator | Russo, Alessandro Shelyakova, Tatiana Casino, Daniela Lopomo, Nicola Strazzari, Alessandro Ortolani, Alessandro Visani, Andrea Dediu, Valentin Marcacci, Maurilio |
description | Abstract Scaffold fixation represents one of the most serious challenges in osteochondral defect surgery. Indeed, the fixation should firmly hold the scaffold in the implanted position as well as it should guaranty stable bone/scaffold interface for efficient tissue regeneration. Nonetheless successful results have been achieved for small defect repair, the fixation remains really problematic for large defects, i.e. defects with areas exceeding 2 cm2 . This paper advances an innovative magnetic fixation approach based on application of magnetic scaffolds. Finite element modeling was exploited to investigate the fixation efficiency. We considered three magnetic configurations: (1) external permanent magnet ring placed around the leg near the joint; (2) four small permanent magnet pins implanted in the bone underlying the scaffold; (3) four similarly implanted stainless steel pins which magnetization was induced by the external magnet. It was found that for most appropriate magnetic materials and optimized magnet-scaffold positioning all the considered configurations provide a sufficient scaffold fixation. In addition to fixation, we analyzed the pressure induced by magnetic forces at the bone/scaffold interface. Such pressure is known to influence significantly the bone regeneration and could be used for magneto-mechanical stimulation. |
doi_str_mv | 10.1016/j.medengphy.2011.12.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1125241088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350453311003468</els_id><sourcerecordid>1125241088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-ca2fbbe57de28f2df1e6b70f616eb9a4e131638f8955f1aac1d1ca4da51e8b6e3</originalsourceid><addsrcrecordid>eNqNkk-P0zAQxSMEYv_AVwBfkLgkeGzHSTggVStYkFbiAJwtxx63Lm4c7BTot8dVyyJxgZNH8u_N2O9NVT0H2gAF-Wrb7NDitJ43h4ZRgAZYQ2F4UF1C3_FaUE4flpq3tBYt5xfVVc5bSqkQkj-uLhjjPfChvazGFZnwB9HznKI2G7JEko12LgZLnP-pFx8nMh7ITq8nXLwhLiaD-TVZzXPw5nRfREGnNZKYF4xmEyebdCAWHZolP6keOR0yPj2f19WXd28_37yv7z7efrhZ3dVG9MNSG83cOGLbWWS9Y9YByrGjToLEcdACgYPkveuHtnWgtQELRgurW8B-lMivq5envuUr3_aYF7Xz2WAIesK4zwqAtUwA7ft_o3Roi0G8EwXtTqhJMeeETs3J73Q6FEgds1BbdZ-FOmahgKmSRVE-Ow_Zj4W41_02vwAvzoAungeX9GR8_sNJIakUvHCrE4fFve8ek8rG42TQ-lQMVjb6_3jMm796mOCnEmD4igfM27hPUwlHgcpFoD4dV-e4OQCUciF7_gsWycHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095813374</pqid></control><display><type>article</type><title>A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Russo, Alessandro ; Shelyakova, Tatiana ; Casino, Daniela ; Lopomo, Nicola ; Strazzari, Alessandro ; Ortolani, Alessandro ; Visani, Andrea ; Dediu, Valentin ; Marcacci, Maurilio</creator><creatorcontrib>Russo, Alessandro ; Shelyakova, Tatiana ; Casino, Daniela ; Lopomo, Nicola ; Strazzari, Alessandro ; Ortolani, Alessandro ; Visani, Andrea ; Dediu, Valentin ; Marcacci, Maurilio</creatorcontrib><description>Abstract Scaffold fixation represents one of the most serious challenges in osteochondral defect surgery. Indeed, the fixation should firmly hold the scaffold in the implanted position as well as it should guaranty stable bone/scaffold interface for efficient tissue regeneration. Nonetheless successful results have been achieved for small defect repair, the fixation remains really problematic for large defects, i.e. defects with areas exceeding 2 cm2 . This paper advances an innovative magnetic fixation approach based on application of magnetic scaffolds. Finite element modeling was exploited to investigate the fixation efficiency. We considered three magnetic configurations: (1) external permanent magnet ring placed around the leg near the joint; (2) four small permanent magnet pins implanted in the bone underlying the scaffold; (3) four similarly implanted stainless steel pins which magnetization was induced by the external magnet. It was found that for most appropriate magnetic materials and optimized magnet-scaffold positioning all the considered configurations provide a sufficient scaffold fixation. In addition to fixation, we analyzed the pressure induced by magnetic forces at the bone/scaffold interface. Such pressure is known to influence significantly the bone regeneration and could be used for magneto-mechanical stimulation.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2011.12.019</identifier><identifier>PMID: 22381395</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Biotechnology ; Bone and Bones - abnormalities ; Bone and Bones - surgery ; Bone and cartilage tissue engineering ; Cartilage, Articular - abnormalities ; Cartilage, Articular - surgery ; Finite Element Analysis ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; Indexing in process ; Industrial applications and implications. Economical aspects ; Magnetic Phenomena ; Magnetic scaffold ; Miscellaneous ; Osteochondral defect ; Prostheses and Implants ; Radiology ; Scaffold fixation ; Tissue Engineering ; Tissue Scaffolds</subject><ispartof>Medical engineering & physics, 2012-11, Vol.34 (9), p.1287-1293</ispartof><rights>IPEM</rights><rights>2012 IPEM</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-ca2fbbe57de28f2df1e6b70f616eb9a4e131638f8955f1aac1d1ca4da51e8b6e3</citedby><cites>FETCH-LOGICAL-c489t-ca2fbbe57de28f2df1e6b70f616eb9a4e131638f8955f1aac1d1ca4da51e8b6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2011.12.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26460643$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22381395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Russo, Alessandro</creatorcontrib><creatorcontrib>Shelyakova, Tatiana</creatorcontrib><creatorcontrib>Casino, Daniela</creatorcontrib><creatorcontrib>Lopomo, Nicola</creatorcontrib><creatorcontrib>Strazzari, Alessandro</creatorcontrib><creatorcontrib>Ortolani, Alessandro</creatorcontrib><creatorcontrib>Visani, Andrea</creatorcontrib><creatorcontrib>Dediu, Valentin</creatorcontrib><creatorcontrib>Marcacci, Maurilio</creatorcontrib><title>A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects</title><title>Medical engineering & physics</title><addtitle>Med Eng Phys</addtitle><description>Abstract Scaffold fixation represents one of the most serious challenges in osteochondral defect surgery. Indeed, the fixation should firmly hold the scaffold in the implanted position as well as it should guaranty stable bone/scaffold interface for efficient tissue regeneration. Nonetheless successful results have been achieved for small defect repair, the fixation remains really problematic for large defects, i.e. defects with areas exceeding 2 cm2 . This paper advances an innovative magnetic fixation approach based on application of magnetic scaffolds. Finite element modeling was exploited to investigate the fixation efficiency. We considered three magnetic configurations: (1) external permanent magnet ring placed around the leg near the joint; (2) four small permanent magnet pins implanted in the bone underlying the scaffold; (3) four similarly implanted stainless steel pins which magnetization was induced by the external magnet. It was found that for most appropriate magnetic materials and optimized magnet-scaffold positioning all the considered configurations provide a sufficient scaffold fixation. In addition to fixation, we analyzed the pressure induced by magnetic forces at the bone/scaffold interface. Such pressure is known to influence significantly the bone regeneration and could be used for magneto-mechanical stimulation.</description><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Bone and Bones - abnormalities</subject><subject>Bone and Bones - surgery</subject><subject>Bone and cartilage tissue engineering</subject><subject>Cartilage, Articular - abnormalities</subject><subject>Cartilage, Articular - surgery</subject><subject>Finite Element Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>Indexing in process</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Magnetic Phenomena</subject><subject>Magnetic scaffold</subject><subject>Miscellaneous</subject><subject>Osteochondral defect</subject><subject>Prostheses and Implants</subject><subject>Radiology</subject><subject>Scaffold fixation</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk-P0zAQxSMEYv_AVwBfkLgkeGzHSTggVStYkFbiAJwtxx63Lm4c7BTot8dVyyJxgZNH8u_N2O9NVT0H2gAF-Wrb7NDitJ43h4ZRgAZYQ2F4UF1C3_FaUE4flpq3tBYt5xfVVc5bSqkQkj-uLhjjPfChvazGFZnwB9HznKI2G7JEko12LgZLnP-pFx8nMh7ITq8nXLwhLiaD-TVZzXPw5nRfREGnNZKYF4xmEyebdCAWHZolP6keOR0yPj2f19WXd28_37yv7z7efrhZ3dVG9MNSG83cOGLbWWS9Y9YByrGjToLEcdACgYPkveuHtnWgtQELRgurW8B-lMivq5envuUr3_aYF7Xz2WAIesK4zwqAtUwA7ft_o3Roi0G8EwXtTqhJMeeETs3J73Q6FEgds1BbdZ-FOmahgKmSRVE-Ow_Zj4W41_02vwAvzoAungeX9GR8_sNJIakUvHCrE4fFve8ek8rG42TQ-lQMVjb6_3jMm796mOCnEmD4igfM27hPUwlHgcpFoD4dV-e4OQCUciF7_gsWycHw</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Russo, Alessandro</creator><creator>Shelyakova, Tatiana</creator><creator>Casino, Daniela</creator><creator>Lopomo, Nicola</creator><creator>Strazzari, Alessandro</creator><creator>Ortolani, Alessandro</creator><creator>Visani, Andrea</creator><creator>Dediu, Valentin</creator><creator>Marcacci, Maurilio</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20121101</creationdate><title>A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects</title><author>Russo, Alessandro ; Shelyakova, Tatiana ; Casino, Daniela ; Lopomo, Nicola ; Strazzari, Alessandro ; Ortolani, Alessandro ; Visani, Andrea ; Dediu, Valentin ; Marcacci, Maurilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-ca2fbbe57de28f2df1e6b70f616eb9a4e131638f8955f1aac1d1ca4da51e8b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Bone and Bones - abnormalities</topic><topic>Bone and Bones - surgery</topic><topic>Bone and cartilage tissue engineering</topic><topic>Cartilage, Articular - abnormalities</topic><topic>Cartilage, Articular - surgery</topic><topic>Finite Element Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>Indexing in process</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Magnetic Phenomena</topic><topic>Magnetic scaffold</topic><topic>Miscellaneous</topic><topic>Osteochondral defect</topic><topic>Prostheses and Implants</topic><topic>Radiology</topic><topic>Scaffold fixation</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russo, Alessandro</creatorcontrib><creatorcontrib>Shelyakova, Tatiana</creatorcontrib><creatorcontrib>Casino, Daniela</creatorcontrib><creatorcontrib>Lopomo, Nicola</creatorcontrib><creatorcontrib>Strazzari, Alessandro</creatorcontrib><creatorcontrib>Ortolani, Alessandro</creatorcontrib><creatorcontrib>Visani, Andrea</creatorcontrib><creatorcontrib>Dediu, Valentin</creatorcontrib><creatorcontrib>Marcacci, Maurilio</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Medical engineering & physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russo, Alessandro</au><au>Shelyakova, Tatiana</au><au>Casino, Daniela</au><au>Lopomo, Nicola</au><au>Strazzari, Alessandro</au><au>Ortolani, Alessandro</au><au>Visani, Andrea</au><au>Dediu, Valentin</au><au>Marcacci, Maurilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects</atitle><jtitle>Medical engineering & physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>34</volume><issue>9</issue><spage>1287</spage><epage>1293</epage><pages>1287-1293</pages><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Abstract Scaffold fixation represents one of the most serious challenges in osteochondral defect surgery. Indeed, the fixation should firmly hold the scaffold in the implanted position as well as it should guaranty stable bone/scaffold interface for efficient tissue regeneration. Nonetheless successful results have been achieved for small defect repair, the fixation remains really problematic for large defects, i.e. defects with areas exceeding 2 cm2 . This paper advances an innovative magnetic fixation approach based on application of magnetic scaffolds. Finite element modeling was exploited to investigate the fixation efficiency. We considered three magnetic configurations: (1) external permanent magnet ring placed around the leg near the joint; (2) four small permanent magnet pins implanted in the bone underlying the scaffold; (3) four similarly implanted stainless steel pins which magnetization was induced by the external magnet. It was found that for most appropriate magnetic materials and optimized magnet-scaffold positioning all the considered configurations provide a sufficient scaffold fixation. In addition to fixation, we analyzed the pressure induced by magnetic forces at the bone/scaffold interface. Such pressure is known to influence significantly the bone regeneration and could be used for magneto-mechanical stimulation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22381395</pmid><doi>10.1016/j.medengphy.2011.12.019</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-4533 |
ispartof | Medical engineering & physics, 2012-11, Vol.34 (9), p.1287-1293 |
issn | 1350-4533 1873-4030 |
language | eng |
recordid | cdi_proquest_miscellaneous_1125241088 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biological and medical sciences Biotechnology Bone and Bones - abnormalities Bone and Bones - surgery Bone and cartilage tissue engineering Cartilage, Articular - abnormalities Cartilage, Articular - surgery Finite Element Analysis Fundamental and applied biological sciences. Psychology Health. Pharmaceutical industry Indexing in process Industrial applications and implications. Economical aspects Magnetic Phenomena Magnetic scaffold Miscellaneous Osteochondral defect Prostheses and Implants Radiology Scaffold fixation Tissue Engineering Tissue Scaffolds |
title | A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20scaffold%20fixation%20by%20magnetic%20forces:%20Application%20to%20large%20osteochondral%20defects&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Russo,%20Alessandro&rft.date=2012-11-01&rft.volume=34&rft.issue=9&rft.spage=1287&rft.epage=1293&rft.pages=1287-1293&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2011.12.019&rft_dat=%3Cproquest_cross%3E1125241088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095813374&rft_id=info:pmid/22381395&rft_els_id=S1350453311003468&rfr_iscdi=true |