A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects

Abstract Scaffold fixation represents one of the most serious challenges in osteochondral defect surgery. Indeed, the fixation should firmly hold the scaffold in the implanted position as well as it should guaranty stable bone/scaffold interface for efficient tissue regeneration. Nonetheless success...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 2012-11, Vol.34 (9), p.1287-1293
Hauptverfasser: Russo, Alessandro, Shelyakova, Tatiana, Casino, Daniela, Lopomo, Nicola, Strazzari, Alessandro, Ortolani, Alessandro, Visani, Andrea, Dediu, Valentin, Marcacci, Maurilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1293
container_issue 9
container_start_page 1287
container_title Medical engineering & physics
container_volume 34
creator Russo, Alessandro
Shelyakova, Tatiana
Casino, Daniela
Lopomo, Nicola
Strazzari, Alessandro
Ortolani, Alessandro
Visani, Andrea
Dediu, Valentin
Marcacci, Maurilio
description Abstract Scaffold fixation represents one of the most serious challenges in osteochondral defect surgery. Indeed, the fixation should firmly hold the scaffold in the implanted position as well as it should guaranty stable bone/scaffold interface for efficient tissue regeneration. Nonetheless successful results have been achieved for small defect repair, the fixation remains really problematic for large defects, i.e. defects with areas exceeding 2 cm2 . This paper advances an innovative magnetic fixation approach based on application of magnetic scaffolds. Finite element modeling was exploited to investigate the fixation efficiency. We considered three magnetic configurations: (1) external permanent magnet ring placed around the leg near the joint; (2) four small permanent magnet pins implanted in the bone underlying the scaffold; (3) four similarly implanted stainless steel pins which magnetization was induced by the external magnet. It was found that for most appropriate magnetic materials and optimized magnet-scaffold positioning all the considered configurations provide a sufficient scaffold fixation. In addition to fixation, we analyzed the pressure induced by magnetic forces at the bone/scaffold interface. Such pressure is known to influence significantly the bone regeneration and could be used for magneto-mechanical stimulation.
doi_str_mv 10.1016/j.medengphy.2011.12.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1125241088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350453311003468</els_id><sourcerecordid>1125241088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-ca2fbbe57de28f2df1e6b70f616eb9a4e131638f8955f1aac1d1ca4da51e8b6e3</originalsourceid><addsrcrecordid>eNqNkk-P0zAQxSMEYv_AVwBfkLgkeGzHSTggVStYkFbiAJwtxx63Lm4c7BTot8dVyyJxgZNH8u_N2O9NVT0H2gAF-Wrb7NDitJ43h4ZRgAZYQ2F4UF1C3_FaUE4flpq3tBYt5xfVVc5bSqkQkj-uLhjjPfChvazGFZnwB9HznKI2G7JEko12LgZLnP-pFx8nMh7ITq8nXLwhLiaD-TVZzXPw5nRfREGnNZKYF4xmEyebdCAWHZolP6keOR0yPj2f19WXd28_37yv7z7efrhZ3dVG9MNSG83cOGLbWWS9Y9YByrGjToLEcdACgYPkveuHtnWgtQELRgurW8B-lMivq5envuUr3_aYF7Xz2WAIesK4zwqAtUwA7ft_o3Roi0G8EwXtTqhJMeeETs3J73Q6FEgds1BbdZ-FOmahgKmSRVE-Ow_Zj4W41_02vwAvzoAungeX9GR8_sNJIakUvHCrE4fFve8ek8rG42TQ-lQMVjb6_3jMm796mOCnEmD4igfM27hPUwlHgcpFoD4dV-e4OQCUciF7_gsWycHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095813374</pqid></control><display><type>article</type><title>A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Russo, Alessandro ; Shelyakova, Tatiana ; Casino, Daniela ; Lopomo, Nicola ; Strazzari, Alessandro ; Ortolani, Alessandro ; Visani, Andrea ; Dediu, Valentin ; Marcacci, Maurilio</creator><creatorcontrib>Russo, Alessandro ; Shelyakova, Tatiana ; Casino, Daniela ; Lopomo, Nicola ; Strazzari, Alessandro ; Ortolani, Alessandro ; Visani, Andrea ; Dediu, Valentin ; Marcacci, Maurilio</creatorcontrib><description>Abstract Scaffold fixation represents one of the most serious challenges in osteochondral defect surgery. Indeed, the fixation should firmly hold the scaffold in the implanted position as well as it should guaranty stable bone/scaffold interface for efficient tissue regeneration. Nonetheless successful results have been achieved for small defect repair, the fixation remains really problematic for large defects, i.e. defects with areas exceeding 2 cm2 . This paper advances an innovative magnetic fixation approach based on application of magnetic scaffolds. Finite element modeling was exploited to investigate the fixation efficiency. We considered three magnetic configurations: (1) external permanent magnet ring placed around the leg near the joint; (2) four small permanent magnet pins implanted in the bone underlying the scaffold; (3) four similarly implanted stainless steel pins which magnetization was induced by the external magnet. It was found that for most appropriate magnetic materials and optimized magnet-scaffold positioning all the considered configurations provide a sufficient scaffold fixation. In addition to fixation, we analyzed the pressure induced by magnetic forces at the bone/scaffold interface. Such pressure is known to influence significantly the bone regeneration and could be used for magneto-mechanical stimulation.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2011.12.019</identifier><identifier>PMID: 22381395</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Biotechnology ; Bone and Bones - abnormalities ; Bone and Bones - surgery ; Bone and cartilage tissue engineering ; Cartilage, Articular - abnormalities ; Cartilage, Articular - surgery ; Finite Element Analysis ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; Indexing in process ; Industrial applications and implications. Economical aspects ; Magnetic Phenomena ; Magnetic scaffold ; Miscellaneous ; Osteochondral defect ; Prostheses and Implants ; Radiology ; Scaffold fixation ; Tissue Engineering ; Tissue Scaffolds</subject><ispartof>Medical engineering &amp; physics, 2012-11, Vol.34 (9), p.1287-1293</ispartof><rights>IPEM</rights><rights>2012 IPEM</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-ca2fbbe57de28f2df1e6b70f616eb9a4e131638f8955f1aac1d1ca4da51e8b6e3</citedby><cites>FETCH-LOGICAL-c489t-ca2fbbe57de28f2df1e6b70f616eb9a4e131638f8955f1aac1d1ca4da51e8b6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2011.12.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26460643$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22381395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Russo, Alessandro</creatorcontrib><creatorcontrib>Shelyakova, Tatiana</creatorcontrib><creatorcontrib>Casino, Daniela</creatorcontrib><creatorcontrib>Lopomo, Nicola</creatorcontrib><creatorcontrib>Strazzari, Alessandro</creatorcontrib><creatorcontrib>Ortolani, Alessandro</creatorcontrib><creatorcontrib>Visani, Andrea</creatorcontrib><creatorcontrib>Dediu, Valentin</creatorcontrib><creatorcontrib>Marcacci, Maurilio</creatorcontrib><title>A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects</title><title>Medical engineering &amp; physics</title><addtitle>Med Eng Phys</addtitle><description>Abstract Scaffold fixation represents one of the most serious challenges in osteochondral defect surgery. Indeed, the fixation should firmly hold the scaffold in the implanted position as well as it should guaranty stable bone/scaffold interface for efficient tissue regeneration. Nonetheless successful results have been achieved for small defect repair, the fixation remains really problematic for large defects, i.e. defects with areas exceeding 2 cm2 . This paper advances an innovative magnetic fixation approach based on application of magnetic scaffolds. Finite element modeling was exploited to investigate the fixation efficiency. We considered three magnetic configurations: (1) external permanent magnet ring placed around the leg near the joint; (2) four small permanent magnet pins implanted in the bone underlying the scaffold; (3) four similarly implanted stainless steel pins which magnetization was induced by the external magnet. It was found that for most appropriate magnetic materials and optimized magnet-scaffold positioning all the considered configurations provide a sufficient scaffold fixation. In addition to fixation, we analyzed the pressure induced by magnetic forces at the bone/scaffold interface. Such pressure is known to influence significantly the bone regeneration and could be used for magneto-mechanical stimulation.</description><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Bone and Bones - abnormalities</subject><subject>Bone and Bones - surgery</subject><subject>Bone and cartilage tissue engineering</subject><subject>Cartilage, Articular - abnormalities</subject><subject>Cartilage, Articular - surgery</subject><subject>Finite Element Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>Indexing in process</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Magnetic Phenomena</subject><subject>Magnetic scaffold</subject><subject>Miscellaneous</subject><subject>Osteochondral defect</subject><subject>Prostheses and Implants</subject><subject>Radiology</subject><subject>Scaffold fixation</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk-P0zAQxSMEYv_AVwBfkLgkeGzHSTggVStYkFbiAJwtxx63Lm4c7BTot8dVyyJxgZNH8u_N2O9NVT0H2gAF-Wrb7NDitJ43h4ZRgAZYQ2F4UF1C3_FaUE4flpq3tBYt5xfVVc5bSqkQkj-uLhjjPfChvazGFZnwB9HznKI2G7JEko12LgZLnP-pFx8nMh7ITq8nXLwhLiaD-TVZzXPw5nRfREGnNZKYF4xmEyebdCAWHZolP6keOR0yPj2f19WXd28_37yv7z7efrhZ3dVG9MNSG83cOGLbWWS9Y9YByrGjToLEcdACgYPkveuHtnWgtQELRgurW8B-lMivq5envuUr3_aYF7Xz2WAIesK4zwqAtUwA7ft_o3Roi0G8EwXtTqhJMeeETs3J73Q6FEgds1BbdZ-FOmahgKmSRVE-Ow_Zj4W41_02vwAvzoAungeX9GR8_sNJIakUvHCrE4fFve8ek8rG42TQ-lQMVjb6_3jMm796mOCnEmD4igfM27hPUwlHgcpFoD4dV-e4OQCUciF7_gsWycHw</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Russo, Alessandro</creator><creator>Shelyakova, Tatiana</creator><creator>Casino, Daniela</creator><creator>Lopomo, Nicola</creator><creator>Strazzari, Alessandro</creator><creator>Ortolani, Alessandro</creator><creator>Visani, Andrea</creator><creator>Dediu, Valentin</creator><creator>Marcacci, Maurilio</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20121101</creationdate><title>A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects</title><author>Russo, Alessandro ; Shelyakova, Tatiana ; Casino, Daniela ; Lopomo, Nicola ; Strazzari, Alessandro ; Ortolani, Alessandro ; Visani, Andrea ; Dediu, Valentin ; Marcacci, Maurilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-ca2fbbe57de28f2df1e6b70f616eb9a4e131638f8955f1aac1d1ca4da51e8b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Bone and Bones - abnormalities</topic><topic>Bone and Bones - surgery</topic><topic>Bone and cartilage tissue engineering</topic><topic>Cartilage, Articular - abnormalities</topic><topic>Cartilage, Articular - surgery</topic><topic>Finite Element Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>Indexing in process</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Magnetic Phenomena</topic><topic>Magnetic scaffold</topic><topic>Miscellaneous</topic><topic>Osteochondral defect</topic><topic>Prostheses and Implants</topic><topic>Radiology</topic><topic>Scaffold fixation</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russo, Alessandro</creatorcontrib><creatorcontrib>Shelyakova, Tatiana</creatorcontrib><creatorcontrib>Casino, Daniela</creatorcontrib><creatorcontrib>Lopomo, Nicola</creatorcontrib><creatorcontrib>Strazzari, Alessandro</creatorcontrib><creatorcontrib>Ortolani, Alessandro</creatorcontrib><creatorcontrib>Visani, Andrea</creatorcontrib><creatorcontrib>Dediu, Valentin</creatorcontrib><creatorcontrib>Marcacci, Maurilio</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Medical engineering &amp; physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russo, Alessandro</au><au>Shelyakova, Tatiana</au><au>Casino, Daniela</au><au>Lopomo, Nicola</au><au>Strazzari, Alessandro</au><au>Ortolani, Alessandro</au><au>Visani, Andrea</au><au>Dediu, Valentin</au><au>Marcacci, Maurilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects</atitle><jtitle>Medical engineering &amp; physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>34</volume><issue>9</issue><spage>1287</spage><epage>1293</epage><pages>1287-1293</pages><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Abstract Scaffold fixation represents one of the most serious challenges in osteochondral defect surgery. Indeed, the fixation should firmly hold the scaffold in the implanted position as well as it should guaranty stable bone/scaffold interface for efficient tissue regeneration. Nonetheless successful results have been achieved for small defect repair, the fixation remains really problematic for large defects, i.e. defects with areas exceeding 2 cm2 . This paper advances an innovative magnetic fixation approach based on application of magnetic scaffolds. Finite element modeling was exploited to investigate the fixation efficiency. We considered three magnetic configurations: (1) external permanent magnet ring placed around the leg near the joint; (2) four small permanent magnet pins implanted in the bone underlying the scaffold; (3) four similarly implanted stainless steel pins which magnetization was induced by the external magnet. It was found that for most appropriate magnetic materials and optimized magnet-scaffold positioning all the considered configurations provide a sufficient scaffold fixation. In addition to fixation, we analyzed the pressure induced by magnetic forces at the bone/scaffold interface. Such pressure is known to influence significantly the bone regeneration and could be used for magneto-mechanical stimulation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22381395</pmid><doi>10.1016/j.medengphy.2011.12.019</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-4533
ispartof Medical engineering & physics, 2012-11, Vol.34 (9), p.1287-1293
issn 1350-4533
1873-4030
language eng
recordid cdi_proquest_miscellaneous_1125241088
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biological and medical sciences
Biotechnology
Bone and Bones - abnormalities
Bone and Bones - surgery
Bone and cartilage tissue engineering
Cartilage, Articular - abnormalities
Cartilage, Articular - surgery
Finite Element Analysis
Fundamental and applied biological sciences. Psychology
Health. Pharmaceutical industry
Indexing in process
Industrial applications and implications. Economical aspects
Magnetic Phenomena
Magnetic scaffold
Miscellaneous
Osteochondral defect
Prostheses and Implants
Radiology
Scaffold fixation
Tissue Engineering
Tissue Scaffolds
title A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20scaffold%20fixation%20by%20magnetic%20forces:%20Application%20to%20large%20osteochondral%20defects&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Russo,%20Alessandro&rft.date=2012-11-01&rft.volume=34&rft.issue=9&rft.spage=1287&rft.epage=1293&rft.pages=1287-1293&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2011.12.019&rft_dat=%3Cproquest_cross%3E1125241088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095813374&rft_id=info:pmid/22381395&rft_els_id=S1350453311003468&rfr_iscdi=true