Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1
Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mec...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2012-10, Vol.76 (2), p.396-409 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 2 |
container_start_page | 396 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 76 |
creator | Peixoto, Rui T. Kunz, Portia A. Kwon, Hyungbae Mabb, Angela M. Sabatini, Bernardo L. Philpot, Benjamin D. Ehlers, Michael D. |
description | Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been unclear. Here, we report that synaptic activity induces acute proteolytic cleavage of neuroligin-1 (NLG1), a postsynaptic adhesion molecule at glutamatergic synapses. NLG1 cleavage is triggered by NMDA receptor activation, requires Ca2+/calmodulin-dependent protein kinase, and is mediated by proteolytic activity of matrix metalloprotease 9 (MMP9). Cleavage of NLG1 occurs at single activated spines, is regulated by neural activity in vivo, and causes rapid destabilization of its presynaptic partner neurexin-1β (NRX1β). In turn, NLG1 cleavage depresses synaptic transmission by abruptly reducing presynaptic release probability. Thus, local proteolytic control of synaptic adhesion tunes synaptic transmission during brain development and plasticity.
► Synaptic activity triggers loss of neuroligin-1 ► Matrix metalloprotease-9 cleaves neuroligin-1 in an NMDAR/CaMK-dependent pathway ► Cleavage of NLG1 destabilizes neurexin-1b and acutely decreases glutamate release ► Neuroligin-1 cleavage is induced by seizures and sensory experience in vivo
Neuroligin-1 is a postsynaptic adhesion protein at glutamatergic synapses. Peixoto et al. report that synaptic activity triggers cleavage of neuroligin-1 by matrix metalloprotease-9, resulting in reduced presynaptic neurotransmitter release. |
doi_str_mv | 10.1016/j.neuron.2012.07.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1125239485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627312006551</els_id><sourcerecordid>1125239485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-6abf8071a1a2b984f991488e6d3b6040fe0f216c1026848669ce3311544d1eee3</originalsourceid><addsrcrecordid>eNp9kE1v1DAURS0EokPhHyAUiQ2bhPdix7E3SNVAP6SqLChry3FeRh5lnMFORpp_X4-msGDR1duce6_eYewjQoWA8uu2CrTEKVQ1YF1BWwHIV2yFoNtSoNav2QqUlqWsW37B3qW0BUDRaHzLLmoOircCV-z6MdqQ0jHY_exd8ctvgh192BTdsbhysz_4-Vh-pz2FnsJcrEeyB7uhYhqKh9P86Dc-lPievRnsmOjD871kv69_PK5vy_ufN3frq_vSCannUtpuUNCiRVt3WolBaxRKkex5J0HAQDDUKB1CLZVQUmpHnCM2QvRIRPySfTn37uP0Z6E0m51PjsbRBpqWZBDrpuZaqCajn_9Dt9MS83eZaoDnetCQKXGmXJxSijSYffQ7G48GwZw8m605ezYnzwZakz3n2Kfn8qXbUf8v9FdsBr6dAco2Dp6iSc5TcNT7SG42_eRfXngCyOCOjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503848090</pqid></control><display><type>article</type><title>Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Peixoto, Rui T. ; Kunz, Portia A. ; Kwon, Hyungbae ; Mabb, Angela M. ; Sabatini, Bernardo L. ; Philpot, Benjamin D. ; Ehlers, Michael D.</creator><creatorcontrib>Peixoto, Rui T. ; Kunz, Portia A. ; Kwon, Hyungbae ; Mabb, Angela M. ; Sabatini, Bernardo L. ; Philpot, Benjamin D. ; Ehlers, Michael D.</creatorcontrib><description>Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been unclear. Here, we report that synaptic activity induces acute proteolytic cleavage of neuroligin-1 (NLG1), a postsynaptic adhesion molecule at glutamatergic synapses. NLG1 cleavage is triggered by NMDA receptor activation, requires Ca2+/calmodulin-dependent protein kinase, and is mediated by proteolytic activity of matrix metalloprotease 9 (MMP9). Cleavage of NLG1 occurs at single activated spines, is regulated by neural activity in vivo, and causes rapid destabilization of its presynaptic partner neurexin-1β (NRX1β). In turn, NLG1 cleavage depresses synaptic transmission by abruptly reducing presynaptic release probability. Thus, local proteolytic control of synaptic adhesion tunes synaptic transmission during brain development and plasticity.
► Synaptic activity triggers loss of neuroligin-1 ► Matrix metalloprotease-9 cleaves neuroligin-1 in an NMDAR/CaMK-dependent pathway ► Cleavage of NLG1 destabilizes neurexin-1b and acutely decreases glutamate release ► Neuroligin-1 cleavage is induced by seizures and sensory experience in vivo
Neuroligin-1 is a postsynaptic adhesion protein at glutamatergic synapses. Peixoto et al. report that synaptic activity triggers cleavage of neuroligin-1 by matrix metalloprotease-9, resulting in reduced presynaptic neurotransmitter release.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2012.07.006</identifier><identifier>PMID: 23083741</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adhesives ; Animals ; Animals, Newborn ; Autism ; Biotinylation ; Brain ; Calcium-Binding Proteins ; Cell Adhesion Molecules, Neuronal - genetics ; Cell Adhesion Molecules, Neuronal - metabolism ; Cells, Cultured ; Cerebral Cortex - cytology ; Chlorocebus aethiops ; Dark Adaptation - genetics ; Dendrites - metabolism ; Dendrites - ultrastructure ; Disease Models, Animal ; Electric Stimulation ; Electroporation ; Enzyme Inhibitors - pharmacology ; Excitatory Amino Acid Agents - pharmacology ; Excitatory Postsynaptic Potentials - drug effects ; Excitatory Postsynaptic Potentials - genetics ; Female ; Glutamic Acid - pharmacology ; Green Fluorescent Proteins - genetics ; Hippocampus - cytology ; Kinases ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Matrix Metalloproteinase 9 - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microscopy, Confocal ; Muscarinic Agonists - toxicity ; Mutation - genetics ; Net losses ; Neural Cell Adhesion Molecules - metabolism ; Neurons ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; Organ Culture Techniques ; Patch-Clamp Techniques ; Photons ; Pilocarpine - toxicity ; Plant Lectins - genetics ; Plant Lectins - metabolism ; Potassium Chloride - pharmacology ; Pregnancy ; Proteins ; Pyridinium Compounds - metabolism ; Quaternary Ammonium Compounds - metabolism ; Red Fluorescent Protein ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Signal Transduction - physiology ; Status Epilepticus - chemically induced ; Studies ; Synaptic Transmission - drug effects ; Synaptic Transmission - genetics ; Synaptic Transmission - physiology ; Threonine - genetics ; Threonine - metabolism ; Transfection ; Vesicular Glutamate Transport Protein 1 - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2012-10, Vol.76 (2), p.396-409</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 18, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-6abf8071a1a2b984f991488e6d3b6040fe0f216c1026848669ce3311544d1eee3</citedby><cites>FETCH-LOGICAL-c469t-6abf8071a1a2b984f991488e6d3b6040fe0f216c1026848669ce3311544d1eee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2012.07.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23083741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peixoto, Rui T.</creatorcontrib><creatorcontrib>Kunz, Portia A.</creatorcontrib><creatorcontrib>Kwon, Hyungbae</creatorcontrib><creatorcontrib>Mabb, Angela M.</creatorcontrib><creatorcontrib>Sabatini, Bernardo L.</creatorcontrib><creatorcontrib>Philpot, Benjamin D.</creatorcontrib><creatorcontrib>Ehlers, Michael D.</creatorcontrib><title>Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been unclear. Here, we report that synaptic activity induces acute proteolytic cleavage of neuroligin-1 (NLG1), a postsynaptic adhesion molecule at glutamatergic synapses. NLG1 cleavage is triggered by NMDA receptor activation, requires Ca2+/calmodulin-dependent protein kinase, and is mediated by proteolytic activity of matrix metalloprotease 9 (MMP9). Cleavage of NLG1 occurs at single activated spines, is regulated by neural activity in vivo, and causes rapid destabilization of its presynaptic partner neurexin-1β (NRX1β). In turn, NLG1 cleavage depresses synaptic transmission by abruptly reducing presynaptic release probability. Thus, local proteolytic control of synaptic adhesion tunes synaptic transmission during brain development and plasticity.
► Synaptic activity triggers loss of neuroligin-1 ► Matrix metalloprotease-9 cleaves neuroligin-1 in an NMDAR/CaMK-dependent pathway ► Cleavage of NLG1 destabilizes neurexin-1b and acutely decreases glutamate release ► Neuroligin-1 cleavage is induced by seizures and sensory experience in vivo
Neuroligin-1 is a postsynaptic adhesion protein at glutamatergic synapses. Peixoto et al. report that synaptic activity triggers cleavage of neuroligin-1 by matrix metalloprotease-9, resulting in reduced presynaptic neurotransmitter release.</description><subject>Adhesives</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Autism</subject><subject>Biotinylation</subject><subject>Brain</subject><subject>Calcium-Binding Proteins</subject><subject>Cell Adhesion Molecules, Neuronal - genetics</subject><subject>Cell Adhesion Molecules, Neuronal - metabolism</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Chlorocebus aethiops</subject><subject>Dark Adaptation - genetics</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - ultrastructure</subject><subject>Disease Models, Animal</subject><subject>Electric Stimulation</subject><subject>Electroporation</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Excitatory Amino Acid Agents - pharmacology</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Excitatory Postsynaptic Potentials - genetics</subject><subject>Female</subject><subject>Glutamic Acid - pharmacology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Hippocampus - cytology</subject><subject>Kinases</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Matrix Metalloproteinase 9 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Confocal</subject><subject>Muscarinic Agonists - toxicity</subject><subject>Mutation - genetics</subject><subject>Net losses</subject><subject>Neural Cell Adhesion Molecules - metabolism</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Organ Culture Techniques</subject><subject>Patch-Clamp Techniques</subject><subject>Photons</subject><subject>Pilocarpine - toxicity</subject><subject>Plant Lectins - genetics</subject><subject>Plant Lectins - metabolism</subject><subject>Potassium Chloride - pharmacology</subject><subject>Pregnancy</subject><subject>Proteins</subject><subject>Pyridinium Compounds - metabolism</subject><subject>Quaternary Ammonium Compounds - metabolism</subject><subject>Red Fluorescent Protein</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Status Epilepticus - chemically induced</subject><subject>Studies</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - genetics</subject><subject>Synaptic Transmission - physiology</subject><subject>Threonine - genetics</subject><subject>Threonine - metabolism</subject><subject>Transfection</subject><subject>Vesicular Glutamate Transport Protein 1 - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAURS0EokPhHyAUiQ2bhPdix7E3SNVAP6SqLChry3FeRh5lnMFORpp_X4-msGDR1duce6_eYewjQoWA8uu2CrTEKVQ1YF1BWwHIV2yFoNtSoNav2QqUlqWsW37B3qW0BUDRaHzLLmoOircCV-z6MdqQ0jHY_exd8ctvgh192BTdsbhysz_4-Vh-pz2FnsJcrEeyB7uhYhqKh9P86Dc-lPievRnsmOjD871kv69_PK5vy_ufN3frq_vSCannUtpuUNCiRVt3WolBaxRKkex5J0HAQDDUKB1CLZVQUmpHnCM2QvRIRPySfTn37uP0Z6E0m51PjsbRBpqWZBDrpuZaqCajn_9Dt9MS83eZaoDnetCQKXGmXJxSijSYffQ7G48GwZw8m605ezYnzwZakz3n2Kfn8qXbUf8v9FdsBr6dAco2Dp6iSc5TcNT7SG42_eRfXngCyOCOjg</recordid><startdate>20121018</startdate><enddate>20121018</enddate><creator>Peixoto, Rui T.</creator><creator>Kunz, Portia A.</creator><creator>Kwon, Hyungbae</creator><creator>Mabb, Angela M.</creator><creator>Sabatini, Bernardo L.</creator><creator>Philpot, Benjamin D.</creator><creator>Ehlers, Michael D.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20121018</creationdate><title>Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1</title><author>Peixoto, Rui T. ; Kunz, Portia A. ; Kwon, Hyungbae ; Mabb, Angela M. ; Sabatini, Bernardo L. ; Philpot, Benjamin D. ; Ehlers, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-6abf8071a1a2b984f991488e6d3b6040fe0f216c1026848669ce3311544d1eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adhesives</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Autism</topic><topic>Biotinylation</topic><topic>Brain</topic><topic>Calcium-Binding Proteins</topic><topic>Cell Adhesion Molecules, Neuronal - genetics</topic><topic>Cell Adhesion Molecules, Neuronal - metabolism</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Chlorocebus aethiops</topic><topic>Dark Adaptation - genetics</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - ultrastructure</topic><topic>Disease Models, Animal</topic><topic>Electric Stimulation</topic><topic>Electroporation</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Excitatory Amino Acid Agents - pharmacology</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Excitatory Postsynaptic Potentials - genetics</topic><topic>Female</topic><topic>Glutamic Acid - pharmacology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Hippocampus - cytology</topic><topic>Kinases</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Matrix Metalloproteinase 9 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Confocal</topic><topic>Muscarinic Agonists - toxicity</topic><topic>Mutation - genetics</topic><topic>Net losses</topic><topic>Neural Cell Adhesion Molecules - metabolism</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Organ Culture Techniques</topic><topic>Patch-Clamp Techniques</topic><topic>Photons</topic><topic>Pilocarpine - toxicity</topic><topic>Plant Lectins - genetics</topic><topic>Plant Lectins - metabolism</topic><topic>Potassium Chloride - pharmacology</topic><topic>Pregnancy</topic><topic>Proteins</topic><topic>Pyridinium Compounds - metabolism</topic><topic>Quaternary Ammonium Compounds - metabolism</topic><topic>Red Fluorescent Protein</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Status Epilepticus - chemically induced</topic><topic>Studies</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - genetics</topic><topic>Synaptic Transmission - physiology</topic><topic>Threonine - genetics</topic><topic>Threonine - metabolism</topic><topic>Transfection</topic><topic>Vesicular Glutamate Transport Protein 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peixoto, Rui T.</creatorcontrib><creatorcontrib>Kunz, Portia A.</creatorcontrib><creatorcontrib>Kwon, Hyungbae</creatorcontrib><creatorcontrib>Mabb, Angela M.</creatorcontrib><creatorcontrib>Sabatini, Bernardo L.</creatorcontrib><creatorcontrib>Philpot, Benjamin D.</creatorcontrib><creatorcontrib>Ehlers, Michael D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peixoto, Rui T.</au><au>Kunz, Portia A.</au><au>Kwon, Hyungbae</au><au>Mabb, Angela M.</au><au>Sabatini, Bernardo L.</au><au>Philpot, Benjamin D.</au><au>Ehlers, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2012-10-18</date><risdate>2012</risdate><volume>76</volume><issue>2</issue><spage>396</spage><epage>409</epage><pages>396-409</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been unclear. Here, we report that synaptic activity induces acute proteolytic cleavage of neuroligin-1 (NLG1), a postsynaptic adhesion molecule at glutamatergic synapses. NLG1 cleavage is triggered by NMDA receptor activation, requires Ca2+/calmodulin-dependent protein kinase, and is mediated by proteolytic activity of matrix metalloprotease 9 (MMP9). Cleavage of NLG1 occurs at single activated spines, is regulated by neural activity in vivo, and causes rapid destabilization of its presynaptic partner neurexin-1β (NRX1β). In turn, NLG1 cleavage depresses synaptic transmission by abruptly reducing presynaptic release probability. Thus, local proteolytic control of synaptic adhesion tunes synaptic transmission during brain development and plasticity.
► Synaptic activity triggers loss of neuroligin-1 ► Matrix metalloprotease-9 cleaves neuroligin-1 in an NMDAR/CaMK-dependent pathway ► Cleavage of NLG1 destabilizes neurexin-1b and acutely decreases glutamate release ► Neuroligin-1 cleavage is induced by seizures and sensory experience in vivo
Neuroligin-1 is a postsynaptic adhesion protein at glutamatergic synapses. Peixoto et al. report that synaptic activity triggers cleavage of neuroligin-1 by matrix metalloprotease-9, resulting in reduced presynaptic neurotransmitter release.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23083741</pmid><doi>10.1016/j.neuron.2012.07.006</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2012-10, Vol.76 (2), p.396-409 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1125239485 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adhesives Animals Animals, Newborn Autism Biotinylation Brain Calcium-Binding Proteins Cell Adhesion Molecules, Neuronal - genetics Cell Adhesion Molecules, Neuronal - metabolism Cells, Cultured Cerebral Cortex - cytology Chlorocebus aethiops Dark Adaptation - genetics Dendrites - metabolism Dendrites - ultrastructure Disease Models, Animal Electric Stimulation Electroporation Enzyme Inhibitors - pharmacology Excitatory Amino Acid Agents - pharmacology Excitatory Postsynaptic Potentials - drug effects Excitatory Postsynaptic Potentials - genetics Female Glutamic Acid - pharmacology Green Fluorescent Proteins - genetics Hippocampus - cytology Kinases Luminescent Proteins - genetics Luminescent Proteins - metabolism Matrix Metalloproteinase 9 - metabolism Mice Mice, Inbred C57BL Mice, Transgenic Microscopy, Confocal Muscarinic Agonists - toxicity Mutation - genetics Net losses Neural Cell Adhesion Molecules - metabolism Neurons Neurons - cytology Neurons - drug effects Neurons - physiology Organ Culture Techniques Patch-Clamp Techniques Photons Pilocarpine - toxicity Plant Lectins - genetics Plant Lectins - metabolism Potassium Chloride - pharmacology Pregnancy Proteins Pyridinium Compounds - metabolism Quaternary Ammonium Compounds - metabolism Red Fluorescent Protein Signal Transduction - drug effects Signal Transduction - genetics Signal Transduction - physiology Status Epilepticus - chemically induced Studies Synaptic Transmission - drug effects Synaptic Transmission - genetics Synaptic Transmission - physiology Threonine - genetics Threonine - metabolism Transfection Vesicular Glutamate Transport Protein 1 - metabolism |
title | Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transsynaptic%20Signaling%20by%20Activity-Dependent%20Cleavage%20of%20Neuroligin-1&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Peixoto,%20Rui%20T.&rft.date=2012-10-18&rft.volume=76&rft.issue=2&rft.spage=396&rft.epage=409&rft.pages=396-409&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2012.07.006&rft_dat=%3Cproquest_cross%3E1125239485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503848090&rft_id=info:pmid/23083741&rft_els_id=S0896627312006551&rfr_iscdi=true |