Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1

Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2012-10, Vol.76 (2), p.396-409
Hauptverfasser: Peixoto, Rui T., Kunz, Portia A., Kwon, Hyungbae, Mabb, Angela M., Sabatini, Bernardo L., Philpot, Benjamin D., Ehlers, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 409
container_issue 2
container_start_page 396
container_title Neuron (Cambridge, Mass.)
container_volume 76
creator Peixoto, Rui T.
Kunz, Portia A.
Kwon, Hyungbae
Mabb, Angela M.
Sabatini, Bernardo L.
Philpot, Benjamin D.
Ehlers, Michael D.
description Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been unclear. Here, we report that synaptic activity induces acute proteolytic cleavage of neuroligin-1 (NLG1), a postsynaptic adhesion molecule at glutamatergic synapses. NLG1 cleavage is triggered by NMDA receptor activation, requires Ca2+/calmodulin-dependent protein kinase, and is mediated by proteolytic activity of matrix metalloprotease 9 (MMP9). Cleavage of NLG1 occurs at single activated spines, is regulated by neural activity in vivo, and causes rapid destabilization of its presynaptic partner neurexin-1β (NRX1β). In turn, NLG1 cleavage depresses synaptic transmission by abruptly reducing presynaptic release probability. Thus, local proteolytic control of synaptic adhesion tunes synaptic transmission during brain development and plasticity. ► Synaptic activity triggers loss of neuroligin-1 ► Matrix metalloprotease-9 cleaves neuroligin-1 in an NMDAR/CaMK-dependent pathway ► Cleavage of NLG1 destabilizes neurexin-1b and acutely decreases glutamate release ► Neuroligin-1 cleavage is induced by seizures and sensory experience in vivo Neuroligin-1 is a postsynaptic adhesion protein at glutamatergic synapses. Peixoto et al. report that synaptic activity triggers cleavage of neuroligin-1 by matrix metalloprotease-9, resulting in reduced presynaptic neurotransmitter release.
doi_str_mv 10.1016/j.neuron.2012.07.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1125239485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627312006551</els_id><sourcerecordid>1125239485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-6abf8071a1a2b984f991488e6d3b6040fe0f216c1026848669ce3311544d1eee3</originalsourceid><addsrcrecordid>eNp9kE1v1DAURS0EokPhHyAUiQ2bhPdix7E3SNVAP6SqLChry3FeRh5lnMFORpp_X4-msGDR1duce6_eYewjQoWA8uu2CrTEKVQ1YF1BWwHIV2yFoNtSoNav2QqUlqWsW37B3qW0BUDRaHzLLmoOircCV-z6MdqQ0jHY_exd8ctvgh192BTdsbhysz_4-Vh-pz2FnsJcrEeyB7uhYhqKh9P86Dc-lPievRnsmOjD871kv69_PK5vy_ufN3frq_vSCannUtpuUNCiRVt3WolBaxRKkex5J0HAQDDUKB1CLZVQUmpHnCM2QvRIRPySfTn37uP0Z6E0m51PjsbRBpqWZBDrpuZaqCajn_9Dt9MS83eZaoDnetCQKXGmXJxSijSYffQ7G48GwZw8m605ezYnzwZakz3n2Kfn8qXbUf8v9FdsBr6dAco2Dp6iSc5TcNT7SG42_eRfXngCyOCOjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503848090</pqid></control><display><type>article</type><title>Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Peixoto, Rui T. ; Kunz, Portia A. ; Kwon, Hyungbae ; Mabb, Angela M. ; Sabatini, Bernardo L. ; Philpot, Benjamin D. ; Ehlers, Michael D.</creator><creatorcontrib>Peixoto, Rui T. ; Kunz, Portia A. ; Kwon, Hyungbae ; Mabb, Angela M. ; Sabatini, Bernardo L. ; Philpot, Benjamin D. ; Ehlers, Michael D.</creatorcontrib><description>Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been unclear. Here, we report that synaptic activity induces acute proteolytic cleavage of neuroligin-1 (NLG1), a postsynaptic adhesion molecule at glutamatergic synapses. NLG1 cleavage is triggered by NMDA receptor activation, requires Ca2+/calmodulin-dependent protein kinase, and is mediated by proteolytic activity of matrix metalloprotease 9 (MMP9). Cleavage of NLG1 occurs at single activated spines, is regulated by neural activity in vivo, and causes rapid destabilization of its presynaptic partner neurexin-1β (NRX1β). In turn, NLG1 cleavage depresses synaptic transmission by abruptly reducing presynaptic release probability. Thus, local proteolytic control of synaptic adhesion tunes synaptic transmission during brain development and plasticity. ► Synaptic activity triggers loss of neuroligin-1 ► Matrix metalloprotease-9 cleaves neuroligin-1 in an NMDAR/CaMK-dependent pathway ► Cleavage of NLG1 destabilizes neurexin-1b and acutely decreases glutamate release ► Neuroligin-1 cleavage is induced by seizures and sensory experience in vivo Neuroligin-1 is a postsynaptic adhesion protein at glutamatergic synapses. Peixoto et al. report that synaptic activity triggers cleavage of neuroligin-1 by matrix metalloprotease-9, resulting in reduced presynaptic neurotransmitter release.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2012.07.006</identifier><identifier>PMID: 23083741</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adhesives ; Animals ; Animals, Newborn ; Autism ; Biotinylation ; Brain ; Calcium-Binding Proteins ; Cell Adhesion Molecules, Neuronal - genetics ; Cell Adhesion Molecules, Neuronal - metabolism ; Cells, Cultured ; Cerebral Cortex - cytology ; Chlorocebus aethiops ; Dark Adaptation - genetics ; Dendrites - metabolism ; Dendrites - ultrastructure ; Disease Models, Animal ; Electric Stimulation ; Electroporation ; Enzyme Inhibitors - pharmacology ; Excitatory Amino Acid Agents - pharmacology ; Excitatory Postsynaptic Potentials - drug effects ; Excitatory Postsynaptic Potentials - genetics ; Female ; Glutamic Acid - pharmacology ; Green Fluorescent Proteins - genetics ; Hippocampus - cytology ; Kinases ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Matrix Metalloproteinase 9 - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microscopy, Confocal ; Muscarinic Agonists - toxicity ; Mutation - genetics ; Net losses ; Neural Cell Adhesion Molecules - metabolism ; Neurons ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; Organ Culture Techniques ; Patch-Clamp Techniques ; Photons ; Pilocarpine - toxicity ; Plant Lectins - genetics ; Plant Lectins - metabolism ; Potassium Chloride - pharmacology ; Pregnancy ; Proteins ; Pyridinium Compounds - metabolism ; Quaternary Ammonium Compounds - metabolism ; Red Fluorescent Protein ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Signal Transduction - physiology ; Status Epilepticus - chemically induced ; Studies ; Synaptic Transmission - drug effects ; Synaptic Transmission - genetics ; Synaptic Transmission - physiology ; Threonine - genetics ; Threonine - metabolism ; Transfection ; Vesicular Glutamate Transport Protein 1 - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2012-10, Vol.76 (2), p.396-409</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 18, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-6abf8071a1a2b984f991488e6d3b6040fe0f216c1026848669ce3311544d1eee3</citedby><cites>FETCH-LOGICAL-c469t-6abf8071a1a2b984f991488e6d3b6040fe0f216c1026848669ce3311544d1eee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2012.07.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23083741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peixoto, Rui T.</creatorcontrib><creatorcontrib>Kunz, Portia A.</creatorcontrib><creatorcontrib>Kwon, Hyungbae</creatorcontrib><creatorcontrib>Mabb, Angela M.</creatorcontrib><creatorcontrib>Sabatini, Bernardo L.</creatorcontrib><creatorcontrib>Philpot, Benjamin D.</creatorcontrib><creatorcontrib>Ehlers, Michael D.</creatorcontrib><title>Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been unclear. Here, we report that synaptic activity induces acute proteolytic cleavage of neuroligin-1 (NLG1), a postsynaptic adhesion molecule at glutamatergic synapses. NLG1 cleavage is triggered by NMDA receptor activation, requires Ca2+/calmodulin-dependent protein kinase, and is mediated by proteolytic activity of matrix metalloprotease 9 (MMP9). Cleavage of NLG1 occurs at single activated spines, is regulated by neural activity in vivo, and causes rapid destabilization of its presynaptic partner neurexin-1β (NRX1β). In turn, NLG1 cleavage depresses synaptic transmission by abruptly reducing presynaptic release probability. Thus, local proteolytic control of synaptic adhesion tunes synaptic transmission during brain development and plasticity. ► Synaptic activity triggers loss of neuroligin-1 ► Matrix metalloprotease-9 cleaves neuroligin-1 in an NMDAR/CaMK-dependent pathway ► Cleavage of NLG1 destabilizes neurexin-1b and acutely decreases glutamate release ► Neuroligin-1 cleavage is induced by seizures and sensory experience in vivo Neuroligin-1 is a postsynaptic adhesion protein at glutamatergic synapses. Peixoto et al. report that synaptic activity triggers cleavage of neuroligin-1 by matrix metalloprotease-9, resulting in reduced presynaptic neurotransmitter release.</description><subject>Adhesives</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Autism</subject><subject>Biotinylation</subject><subject>Brain</subject><subject>Calcium-Binding Proteins</subject><subject>Cell Adhesion Molecules, Neuronal - genetics</subject><subject>Cell Adhesion Molecules, Neuronal - metabolism</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Chlorocebus aethiops</subject><subject>Dark Adaptation - genetics</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - ultrastructure</subject><subject>Disease Models, Animal</subject><subject>Electric Stimulation</subject><subject>Electroporation</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Excitatory Amino Acid Agents - pharmacology</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Excitatory Postsynaptic Potentials - genetics</subject><subject>Female</subject><subject>Glutamic Acid - pharmacology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Hippocampus - cytology</subject><subject>Kinases</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Matrix Metalloproteinase 9 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Confocal</subject><subject>Muscarinic Agonists - toxicity</subject><subject>Mutation - genetics</subject><subject>Net losses</subject><subject>Neural Cell Adhesion Molecules - metabolism</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Organ Culture Techniques</subject><subject>Patch-Clamp Techniques</subject><subject>Photons</subject><subject>Pilocarpine - toxicity</subject><subject>Plant Lectins - genetics</subject><subject>Plant Lectins - metabolism</subject><subject>Potassium Chloride - pharmacology</subject><subject>Pregnancy</subject><subject>Proteins</subject><subject>Pyridinium Compounds - metabolism</subject><subject>Quaternary Ammonium Compounds - metabolism</subject><subject>Red Fluorescent Protein</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Status Epilepticus - chemically induced</subject><subject>Studies</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - genetics</subject><subject>Synaptic Transmission - physiology</subject><subject>Threonine - genetics</subject><subject>Threonine - metabolism</subject><subject>Transfection</subject><subject>Vesicular Glutamate Transport Protein 1 - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAURS0EokPhHyAUiQ2bhPdix7E3SNVAP6SqLChry3FeRh5lnMFORpp_X4-msGDR1duce6_eYewjQoWA8uu2CrTEKVQ1YF1BWwHIV2yFoNtSoNav2QqUlqWsW37B3qW0BUDRaHzLLmoOircCV-z6MdqQ0jHY_exd8ctvgh192BTdsbhysz_4-Vh-pz2FnsJcrEeyB7uhYhqKh9P86Dc-lPievRnsmOjD871kv69_PK5vy_ufN3frq_vSCannUtpuUNCiRVt3WolBaxRKkex5J0HAQDDUKB1CLZVQUmpHnCM2QvRIRPySfTn37uP0Z6E0m51PjsbRBpqWZBDrpuZaqCajn_9Dt9MS83eZaoDnetCQKXGmXJxSijSYffQ7G48GwZw8m605ezYnzwZakz3n2Kfn8qXbUf8v9FdsBr6dAco2Dp6iSc5TcNT7SG42_eRfXngCyOCOjg</recordid><startdate>20121018</startdate><enddate>20121018</enddate><creator>Peixoto, Rui T.</creator><creator>Kunz, Portia A.</creator><creator>Kwon, Hyungbae</creator><creator>Mabb, Angela M.</creator><creator>Sabatini, Bernardo L.</creator><creator>Philpot, Benjamin D.</creator><creator>Ehlers, Michael D.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20121018</creationdate><title>Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1</title><author>Peixoto, Rui T. ; Kunz, Portia A. ; Kwon, Hyungbae ; Mabb, Angela M. ; Sabatini, Bernardo L. ; Philpot, Benjamin D. ; Ehlers, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-6abf8071a1a2b984f991488e6d3b6040fe0f216c1026848669ce3311544d1eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adhesives</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Autism</topic><topic>Biotinylation</topic><topic>Brain</topic><topic>Calcium-Binding Proteins</topic><topic>Cell Adhesion Molecules, Neuronal - genetics</topic><topic>Cell Adhesion Molecules, Neuronal - metabolism</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Chlorocebus aethiops</topic><topic>Dark Adaptation - genetics</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - ultrastructure</topic><topic>Disease Models, Animal</topic><topic>Electric Stimulation</topic><topic>Electroporation</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Excitatory Amino Acid Agents - pharmacology</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Excitatory Postsynaptic Potentials - genetics</topic><topic>Female</topic><topic>Glutamic Acid - pharmacology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Hippocampus - cytology</topic><topic>Kinases</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Matrix Metalloproteinase 9 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Confocal</topic><topic>Muscarinic Agonists - toxicity</topic><topic>Mutation - genetics</topic><topic>Net losses</topic><topic>Neural Cell Adhesion Molecules - metabolism</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Organ Culture Techniques</topic><topic>Patch-Clamp Techniques</topic><topic>Photons</topic><topic>Pilocarpine - toxicity</topic><topic>Plant Lectins - genetics</topic><topic>Plant Lectins - metabolism</topic><topic>Potassium Chloride - pharmacology</topic><topic>Pregnancy</topic><topic>Proteins</topic><topic>Pyridinium Compounds - metabolism</topic><topic>Quaternary Ammonium Compounds - metabolism</topic><topic>Red Fluorescent Protein</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Status Epilepticus - chemically induced</topic><topic>Studies</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - genetics</topic><topic>Synaptic Transmission - physiology</topic><topic>Threonine - genetics</topic><topic>Threonine - metabolism</topic><topic>Transfection</topic><topic>Vesicular Glutamate Transport Protein 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peixoto, Rui T.</creatorcontrib><creatorcontrib>Kunz, Portia A.</creatorcontrib><creatorcontrib>Kwon, Hyungbae</creatorcontrib><creatorcontrib>Mabb, Angela M.</creatorcontrib><creatorcontrib>Sabatini, Bernardo L.</creatorcontrib><creatorcontrib>Philpot, Benjamin D.</creatorcontrib><creatorcontrib>Ehlers, Michael D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peixoto, Rui T.</au><au>Kunz, Portia A.</au><au>Kwon, Hyungbae</au><au>Mabb, Angela M.</au><au>Sabatini, Bernardo L.</au><au>Philpot, Benjamin D.</au><au>Ehlers, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2012-10-18</date><risdate>2012</risdate><volume>76</volume><issue>2</issue><spage>396</spage><epage>409</epage><pages>396-409</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been unclear. Here, we report that synaptic activity induces acute proteolytic cleavage of neuroligin-1 (NLG1), a postsynaptic adhesion molecule at glutamatergic synapses. NLG1 cleavage is triggered by NMDA receptor activation, requires Ca2+/calmodulin-dependent protein kinase, and is mediated by proteolytic activity of matrix metalloprotease 9 (MMP9). Cleavage of NLG1 occurs at single activated spines, is regulated by neural activity in vivo, and causes rapid destabilization of its presynaptic partner neurexin-1β (NRX1β). In turn, NLG1 cleavage depresses synaptic transmission by abruptly reducing presynaptic release probability. Thus, local proteolytic control of synaptic adhesion tunes synaptic transmission during brain development and plasticity. ► Synaptic activity triggers loss of neuroligin-1 ► Matrix metalloprotease-9 cleaves neuroligin-1 in an NMDAR/CaMK-dependent pathway ► Cleavage of NLG1 destabilizes neurexin-1b and acutely decreases glutamate release ► Neuroligin-1 cleavage is induced by seizures and sensory experience in vivo Neuroligin-1 is a postsynaptic adhesion protein at glutamatergic synapses. Peixoto et al. report that synaptic activity triggers cleavage of neuroligin-1 by matrix metalloprotease-9, resulting in reduced presynaptic neurotransmitter release.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23083741</pmid><doi>10.1016/j.neuron.2012.07.006</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2012-10, Vol.76 (2), p.396-409
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_1125239485
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adhesives
Animals
Animals, Newborn
Autism
Biotinylation
Brain
Calcium-Binding Proteins
Cell Adhesion Molecules, Neuronal - genetics
Cell Adhesion Molecules, Neuronal - metabolism
Cells, Cultured
Cerebral Cortex - cytology
Chlorocebus aethiops
Dark Adaptation - genetics
Dendrites - metabolism
Dendrites - ultrastructure
Disease Models, Animal
Electric Stimulation
Electroporation
Enzyme Inhibitors - pharmacology
Excitatory Amino Acid Agents - pharmacology
Excitatory Postsynaptic Potentials - drug effects
Excitatory Postsynaptic Potentials - genetics
Female
Glutamic Acid - pharmacology
Green Fluorescent Proteins - genetics
Hippocampus - cytology
Kinases
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Matrix Metalloproteinase 9 - metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microscopy, Confocal
Muscarinic Agonists - toxicity
Mutation - genetics
Net losses
Neural Cell Adhesion Molecules - metabolism
Neurons
Neurons - cytology
Neurons - drug effects
Neurons - physiology
Organ Culture Techniques
Patch-Clamp Techniques
Photons
Pilocarpine - toxicity
Plant Lectins - genetics
Plant Lectins - metabolism
Potassium Chloride - pharmacology
Pregnancy
Proteins
Pyridinium Compounds - metabolism
Quaternary Ammonium Compounds - metabolism
Red Fluorescent Protein
Signal Transduction - drug effects
Signal Transduction - genetics
Signal Transduction - physiology
Status Epilepticus - chemically induced
Studies
Synaptic Transmission - drug effects
Synaptic Transmission - genetics
Synaptic Transmission - physiology
Threonine - genetics
Threonine - metabolism
Transfection
Vesicular Glutamate Transport Protein 1 - metabolism
title Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transsynaptic%20Signaling%20by%20Activity-Dependent%20Cleavage%20of%20Neuroligin-1&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Peixoto,%20Rui%20T.&rft.date=2012-10-18&rft.volume=76&rft.issue=2&rft.spage=396&rft.epage=409&rft.pages=396-409&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2012.07.006&rft_dat=%3Cproquest_cross%3E1125239485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503848090&rft_id=info:pmid/23083741&rft_els_id=S0896627312006551&rfr_iscdi=true