Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices

Nanoscience and nanotechnology can provide tremendous benefits to electrochemical energy storage devices, such as batteries and supercapacitors, by combining new nanoscale properties to realize enhanced energy and power capabilities. A number of published reports on hybrid systems are systematically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2012, Vol.5 (11), p.9363-9373
Hauptverfasser: Naoi, Katsuhiko, Ishimoto, Syuichi, Miyamoto, Jun-ichi, Naoi, Wako
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9373
container_issue 11
container_start_page 9363
container_title Energy & environmental science
container_volume 5
creator Naoi, Katsuhiko
Ishimoto, Syuichi
Miyamoto, Jun-ichi
Naoi, Wako
description Nanoscience and nanotechnology can provide tremendous benefits to electrochemical energy storage devices, such as batteries and supercapacitors, by combining new nanoscale properties to realize enhanced energy and power capabilities. A number of published reports on hybrid systems are systematically reviewed in this perspective. Several potential strategies to enhance the energy density above that of generation-I electric double layer capacitors (EDLC: activated carbon/activated carbon) are discussed and some fundamental issues and future directions are identified. We suggest a new hybrid supercapacitor system that is able to meet the energy and power demands for a variety of applications, ranging from microelectronic devices to electrical vehicles, which presents itself as a breakthrough improvement. Two practical hybrid supercapacitor systems, namely, a lithium-ion capacitor (LIC: graphite/activated carbon) and a nanohybrid capacitor (NHC: (nc-Li 4 Ti 5 O 12 /CNF composite)/activated carbon), are featured and compared. The proposed NHC can pave the way toward generation-II supercapacitor systems by taking advantage of a novel, high quality, high efficiency and inexpensive nanomaterial preparation procedure. With such a breakthrough in nanofabrication-nanohybridization technology, the NHC, which utilizes an ultrafast nano-crystalline Li 4 Ti 5 O 12 , is considered to be an alternative for conventional generation-I EDLCs. In this perspective, the authors attempt to identify the essential issues for practical hybrids and suggest methods to overcome the rate enhancement by presenting the ultrafast performance of an Li 4 Ti 5 O 12 nano-crystal prepared via a unique in situ material processing technology under ultra-centrifugation.
doi_str_mv 10.1039/c2ee21675b
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1125237644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671359587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-8c49640dc28324bcc39e571a854de1fbc81fdbd4f9fdf8187d48e0f3fe5ef0673</originalsourceid><addsrcrecordid>eNqN0M9LwzAUB_AgCs7pxbtQTxOhmjRJk3iTMX_AwIN6lJImL7OyNTVpB_vv7dxUvIin9-D7ee_wReiY4AuCqbo0GUBGcsHLHTQggrOUC5zvfu25yvbRQYxvGOcZFmqAXh7B-NomM6gh6LbydTKqde1fV2WobBK7BoLRjTZV68PoKpks_bz7ZN4l26BaQrI-n62S2Cs9g8TCsjIQD9Ge0_MIR9s5RM83k6fxXTp9uL0fX09Tw6RqU2mYyhm2JpM0Y6UxVAEXREvOLBBXGkmcLS1zylkniRSWScCOOuDgcC7oEJ1t_jbBv3cQ22JRRQPzua7Bd7HoGyGUKy7_QUnGMypyxnp6vqEm-BgDuKIJ1UKHVUFwsa67-Km7xycbHKL5dr_y07_yorGOfgCNd4m1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1125237644</pqid></control><display><type>article</type><title>Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Naoi, Katsuhiko ; Ishimoto, Syuichi ; Miyamoto, Jun-ichi ; Naoi, Wako</creator><creatorcontrib>Naoi, Katsuhiko ; Ishimoto, Syuichi ; Miyamoto, Jun-ichi ; Naoi, Wako</creatorcontrib><description>Nanoscience and nanotechnology can provide tremendous benefits to electrochemical energy storage devices, such as batteries and supercapacitors, by combining new nanoscale properties to realize enhanced energy and power capabilities. A number of published reports on hybrid systems are systematically reviewed in this perspective. Several potential strategies to enhance the energy density above that of generation-I electric double layer capacitors (EDLC: activated carbon/activated carbon) are discussed and some fundamental issues and future directions are identified. We suggest a new hybrid supercapacitor system that is able to meet the energy and power demands for a variety of applications, ranging from microelectronic devices to electrical vehicles, which presents itself as a breakthrough improvement. Two practical hybrid supercapacitor systems, namely, a lithium-ion capacitor (LIC: graphite/activated carbon) and a nanohybrid capacitor (NHC: (nc-Li 4 Ti 5 O 12 /CNF composite)/activated carbon), are featured and compared. The proposed NHC can pave the way toward generation-II supercapacitor systems by taking advantage of a novel, high quality, high efficiency and inexpensive nanomaterial preparation procedure. With such a breakthrough in nanofabrication-nanohybridization technology, the NHC, which utilizes an ultrafast nano-crystalline Li 4 Ti 5 O 12 , is considered to be an alternative for conventional generation-I EDLCs. In this perspective, the authors attempt to identify the essential issues for practical hybrids and suggest methods to overcome the rate enhancement by presenting the ultrafast performance of an Li 4 Ti 5 O 12 nano-crystal prepared via a unique in situ material processing technology under ultra-centrifugation.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c2ee21675b</identifier><language>eng</language><subject>Activated carbon ; Capacitors ; Devices ; Energy storage ; Nanocomposites ; Nanomaterials ; Nanostructure ; Supercapacitors</subject><ispartof>Energy &amp; environmental science, 2012, Vol.5 (11), p.9363-9373</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-8c49640dc28324bcc39e571a854de1fbc81fdbd4f9fdf8187d48e0f3fe5ef0673</citedby><cites>FETCH-LOGICAL-c489t-8c49640dc28324bcc39e571a854de1fbc81fdbd4f9fdf8187d48e0f3fe5ef0673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Naoi, Katsuhiko</creatorcontrib><creatorcontrib>Ishimoto, Syuichi</creatorcontrib><creatorcontrib>Miyamoto, Jun-ichi</creatorcontrib><creatorcontrib>Naoi, Wako</creatorcontrib><title>Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices</title><title>Energy &amp; environmental science</title><description>Nanoscience and nanotechnology can provide tremendous benefits to electrochemical energy storage devices, such as batteries and supercapacitors, by combining new nanoscale properties to realize enhanced energy and power capabilities. A number of published reports on hybrid systems are systematically reviewed in this perspective. Several potential strategies to enhance the energy density above that of generation-I electric double layer capacitors (EDLC: activated carbon/activated carbon) are discussed and some fundamental issues and future directions are identified. We suggest a new hybrid supercapacitor system that is able to meet the energy and power demands for a variety of applications, ranging from microelectronic devices to electrical vehicles, which presents itself as a breakthrough improvement. Two practical hybrid supercapacitor systems, namely, a lithium-ion capacitor (LIC: graphite/activated carbon) and a nanohybrid capacitor (NHC: (nc-Li 4 Ti 5 O 12 /CNF composite)/activated carbon), are featured and compared. The proposed NHC can pave the way toward generation-II supercapacitor systems by taking advantage of a novel, high quality, high efficiency and inexpensive nanomaterial preparation procedure. With such a breakthrough in nanofabrication-nanohybridization technology, the NHC, which utilizes an ultrafast nano-crystalline Li 4 Ti 5 O 12 , is considered to be an alternative for conventional generation-I EDLCs. In this perspective, the authors attempt to identify the essential issues for practical hybrids and suggest methods to overcome the rate enhancement by presenting the ultrafast performance of an Li 4 Ti 5 O 12 nano-crystal prepared via a unique in situ material processing technology under ultra-centrifugation.</description><subject>Activated carbon</subject><subject>Capacitors</subject><subject>Devices</subject><subject>Energy storage</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Supercapacitors</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqN0M9LwzAUB_AgCs7pxbtQTxOhmjRJk3iTMX_AwIN6lJImL7OyNTVpB_vv7dxUvIin9-D7ee_wReiY4AuCqbo0GUBGcsHLHTQggrOUC5zvfu25yvbRQYxvGOcZFmqAXh7B-NomM6gh6LbydTKqde1fV2WobBK7BoLRjTZV68PoKpks_bz7ZN4l26BaQrI-n62S2Cs9g8TCsjIQD9Ge0_MIR9s5RM83k6fxXTp9uL0fX09Tw6RqU2mYyhm2JpM0Y6UxVAEXREvOLBBXGkmcLS1zylkniRSWScCOOuDgcC7oEJ1t_jbBv3cQ22JRRQPzua7Bd7HoGyGUKy7_QUnGMypyxnp6vqEm-BgDuKIJ1UKHVUFwsa67-Km7xycbHKL5dr_y07_yorGOfgCNd4m1</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Naoi, Katsuhiko</creator><creator>Ishimoto, Syuichi</creator><creator>Miyamoto, Jun-ichi</creator><creator>Naoi, Wako</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>2012</creationdate><title>Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices</title><author>Naoi, Katsuhiko ; Ishimoto, Syuichi ; Miyamoto, Jun-ichi ; Naoi, Wako</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-8c49640dc28324bcc39e571a854de1fbc81fdbd4f9fdf8187d48e0f3fe5ef0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activated carbon</topic><topic>Capacitors</topic><topic>Devices</topic><topic>Energy storage</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naoi, Katsuhiko</creatorcontrib><creatorcontrib>Ishimoto, Syuichi</creatorcontrib><creatorcontrib>Miyamoto, Jun-ichi</creatorcontrib><creatorcontrib>Naoi, Wako</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naoi, Katsuhiko</au><au>Ishimoto, Syuichi</au><au>Miyamoto, Jun-ichi</au><au>Naoi, Wako</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2012</date><risdate>2012</risdate><volume>5</volume><issue>11</issue><spage>9363</spage><epage>9373</epage><pages>9363-9373</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Nanoscience and nanotechnology can provide tremendous benefits to electrochemical energy storage devices, such as batteries and supercapacitors, by combining new nanoscale properties to realize enhanced energy and power capabilities. A number of published reports on hybrid systems are systematically reviewed in this perspective. Several potential strategies to enhance the energy density above that of generation-I electric double layer capacitors (EDLC: activated carbon/activated carbon) are discussed and some fundamental issues and future directions are identified. We suggest a new hybrid supercapacitor system that is able to meet the energy and power demands for a variety of applications, ranging from microelectronic devices to electrical vehicles, which presents itself as a breakthrough improvement. Two practical hybrid supercapacitor systems, namely, a lithium-ion capacitor (LIC: graphite/activated carbon) and a nanohybrid capacitor (NHC: (nc-Li 4 Ti 5 O 12 /CNF composite)/activated carbon), are featured and compared. The proposed NHC can pave the way toward generation-II supercapacitor systems by taking advantage of a novel, high quality, high efficiency and inexpensive nanomaterial preparation procedure. With such a breakthrough in nanofabrication-nanohybridization technology, the NHC, which utilizes an ultrafast nano-crystalline Li 4 Ti 5 O 12 , is considered to be an alternative for conventional generation-I EDLCs. In this perspective, the authors attempt to identify the essential issues for practical hybrids and suggest methods to overcome the rate enhancement by presenting the ultrafast performance of an Li 4 Ti 5 O 12 nano-crystal prepared via a unique in situ material processing technology under ultra-centrifugation.</abstract><doi>10.1039/c2ee21675b</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2012, Vol.5 (11), p.9363-9373
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_miscellaneous_1125237644
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Activated carbon
Capacitors
Devices
Energy storage
Nanocomposites
Nanomaterials
Nanostructure
Supercapacitors
title Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T04%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second%20generation%20'nanohybrid%20supercapacitor':%20Evolution%20of%20capacitive%20energy%20storage%20devices&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Naoi,%20Katsuhiko&rft.date=2012&rft.volume=5&rft.issue=11&rft.spage=9363&rft.epage=9373&rft.pages=9363-9373&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c2ee21675b&rft_dat=%3Cproquest_rsc_p%3E1671359587%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1125237644&rft_id=info:pmid/&rfr_iscdi=true