Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring
The methods using plants for biomonitoring of air and soil quality are simple, cheap, and fast and can supplement the classical physicochemical methods. In this study, biological pollen characterization of some collected legume species from an aluminum smelter area in Iran (IRALCO) was carried out t...
Gespeichert in:
Veröffentlicht in: | Biological trace element research 2012-06, Vol.147 (1-3), p.315-319 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 319 |
---|---|
container_issue | 1-3 |
container_start_page | 315 |
container_title | Biological trace element research |
container_volume | 147 |
creator | Malayeri, Behrooz Eshghi Noori, Mitra Jafari, Mehrana |
description | The methods using plants for biomonitoring of air and soil quality are simple, cheap, and fast and can supplement the classical physicochemical methods. In this study, biological pollen characterization of some collected legume species from an aluminum smelter area in Iran (IRALCO) was carried out to determine the actual value of pollen as a bioindicator of the effects of soil and atmospheric pollution. Young buds and flowers of six legumes (Cercis siliquastrum L., Medicago sativa L., Robinia pseudoacacia L., Melilotus officinalis (L.) lam, Trifolium repens L., and Sophora alopecuroides L.) in polluted and control plants were removed and compared. Studies of light and electron microscopic preparation showed some abnormalities during pollen development in affect of fluoride pollution. The viability of pollen grains estimated by staining with acetocarmine shows sharp differences in smearing advanced pollen grains from abnormal ones. Except M. officinalis, the pollen grains of C. siliquastrum, M. sativa, R. pseudoacacia, T. repens, and S. alopecuroides in polluted areas showed light, partial, or no staining with acetocarmine, whereas almost all of the control ones clearly stained. Observation of the pollen grains by light microscopy and scanning electron microscopy showed the significant effect of fluoride on shapes and sizes of pollen grains. The stimulation and inhibition of these pollen characteristics depend on the pollen species as well as on the pollutant and its concentration. Therefore, pollen grains provide essential information on biological impact of pollutants and they are good candidates for biomonitoring the atmospheric and edaphic pollutions. |
doi_str_mv | 10.1007/s12011-011-9290-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1125226243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672750751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1c4c2dc23ea37c1b2d02daf9532e2ff7b8567befe85d900609b1f08075850fe3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhB3CBSFy4pJ0Zx4l9hIoCUilItFwtJ7G3rrLx1k4O--9xSEGoEuIwsjT63pvxPMZeIpwgQHOakACxXEqRglI-YhsUQpXQEDxmG8Cal5WS1RF7ltItADak-FN2RIQ1chQbdnmd_LgtphtbfAvDYMfihzetH_x0KMzYF19C3N-EIWwPhQuxOB_mEH2_wvPkw1i892EXRj_l_rh9zp44MyT74v49ZlfnH67OPpUXXz9-Pnt3UXYVqanEruqo74hbw5sOW-qBeuOU4GTJuaaVom5a66wUvQKoQbXoQEIjpABn-TF7u9ruY7ibbZr0zqfODoMZbZiTRiRBVFPF_4_moyhZK6wy-uYBehvmOOZ__KLyFlCLTOFKdTGkFK3T--h3Jh4ypJdY9BqLXmqJRcuseXXvPLc72_9R_M4hA7QCab-c0ca_R__b9fUqciZos40-6evvGapy0ELVEvhPsMufmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017609065</pqid></control><display><type>article</type><title>Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Malayeri, Behrooz Eshghi ; Noori, Mitra ; Jafari, Mehrana</creator><creatorcontrib>Malayeri, Behrooz Eshghi ; Noori, Mitra ; Jafari, Mehrana</creatorcontrib><description>The methods using plants for biomonitoring of air and soil quality are simple, cheap, and fast and can supplement the classical physicochemical methods. In this study, biological pollen characterization of some collected legume species from an aluminum smelter area in Iran (IRALCO) was carried out to determine the actual value of pollen as a bioindicator of the effects of soil and atmospheric pollution. Young buds and flowers of six legumes (Cercis siliquastrum L., Medicago sativa L., Robinia pseudoacacia L., Melilotus officinalis (L.) lam, Trifolium repens L., and Sophora alopecuroides L.) in polluted and control plants were removed and compared. Studies of light and electron microscopic preparation showed some abnormalities during pollen development in affect of fluoride pollution. The viability of pollen grains estimated by staining with acetocarmine shows sharp differences in smearing advanced pollen grains from abnormal ones. Except M. officinalis, the pollen grains of C. siliquastrum, M. sativa, R. pseudoacacia, T. repens, and S. alopecuroides in polluted areas showed light, partial, or no staining with acetocarmine, whereas almost all of the control ones clearly stained. Observation of the pollen grains by light microscopy and scanning electron microscopy showed the significant effect of fluoride on shapes and sizes of pollen grains. The stimulation and inhibition of these pollen characteristics depend on the pollen species as well as on the pollutant and its concentration. Therefore, pollen grains provide essential information on biological impact of pollutants and they are good candidates for biomonitoring the atmospheric and edaphic pollutions.</description><identifier>ISSN: 0163-4984</identifier><identifier>EISSN: 1559-0720</identifier><identifier>DOI: 10.1007/s12011-011-9290-8</identifier><identifier>PMID: 22161315</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject><![CDATA[Air Pollutants - toxicity ; Air pollution ; Alfalfa ; Aluminum ; Biochemistry ; Bioindicators ; Biomedical and Life Sciences ; Biomonitoring ; Biotechnology ; buds ; Carmine - analogs & derivatives ; Cell Survival - drug effects ; Cercis siliquastrum ; Economics ; Environmental impact ; Environmental monitoring ; Environmental Monitoring - methods ; Environmental Pollutants - toxicity ; Environmental Pollution - analysis ; Fabaceae - cytology ; Fabaceae - drug effects ; Fabaceae - growth & development ; flowers ; Flowers - cytology ; Flowers - drug effects ; Flowers - growth & development ; Fluoride ; Fluorides ; Fluorides - toxicity ; Grains ; Indicator species ; legumes ; Life Sciences ; Light microscopy ; Medicago sativa ; Medicago sativa - cytology ; Medicago sativa - drug effects ; Medicago sativa - growth & development ; Melilotus - cytology ; Melilotus - drug effects ; Melilotus - growth & development ; Melilotus officinalis ; Meristem - cytology ; Meristem - drug effects ; Meristem - growth & development ; Microscopy ; Microscopy, Electron, Scanning ; Nutrition ; Oncology ; Plant populations ; Pollen ; Pollen - cytology ; Pollen - drug effects ; Pollen - ultrastructure ; Pollutants ; Pollution control ; Reproducibility of Results ; Robinia - cytology ; Robinia - drug effects ; Robinia - growth & development ; Robinia pseudoacacia ; scanning electron microscopy ; Smelters ; Soil ; Soil contamination ; Soil Pollutants - toxicity ; Soil quality ; Sophora - cytology ; Sophora - drug effects ; Sophora - growth & development ; Sophora alopecuroides ; Staining and Labeling - methods ; Trifolium - cytology ; Trifolium - drug effects ; Trifolium - growth & development ; Trifolium repens]]></subject><ispartof>Biological trace element research, 2012-06, Vol.147 (1-3), p.315-319</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1c4c2dc23ea37c1b2d02daf9532e2ff7b8567befe85d900609b1f08075850fe3</citedby><cites>FETCH-LOGICAL-c429t-1c4c2dc23ea37c1b2d02daf9532e2ff7b8567befe85d900609b1f08075850fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12011-011-9290-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12011-011-9290-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22161315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malayeri, Behrooz Eshghi</creatorcontrib><creatorcontrib>Noori, Mitra</creatorcontrib><creatorcontrib>Jafari, Mehrana</creatorcontrib><title>Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring</title><title>Biological trace element research</title><addtitle>Biol Trace Elem Res</addtitle><addtitle>Biol Trace Elem Res</addtitle><description>The methods using plants for biomonitoring of air and soil quality are simple, cheap, and fast and can supplement the classical physicochemical methods. In this study, biological pollen characterization of some collected legume species from an aluminum smelter area in Iran (IRALCO) was carried out to determine the actual value of pollen as a bioindicator of the effects of soil and atmospheric pollution. Young buds and flowers of six legumes (Cercis siliquastrum L., Medicago sativa L., Robinia pseudoacacia L., Melilotus officinalis (L.) lam, Trifolium repens L., and Sophora alopecuroides L.) in polluted and control plants were removed and compared. Studies of light and electron microscopic preparation showed some abnormalities during pollen development in affect of fluoride pollution. The viability of pollen grains estimated by staining with acetocarmine shows sharp differences in smearing advanced pollen grains from abnormal ones. Except M. officinalis, the pollen grains of C. siliquastrum, M. sativa, R. pseudoacacia, T. repens, and S. alopecuroides in polluted areas showed light, partial, or no staining with acetocarmine, whereas almost all of the control ones clearly stained. Observation of the pollen grains by light microscopy and scanning electron microscopy showed the significant effect of fluoride on shapes and sizes of pollen grains. The stimulation and inhibition of these pollen characteristics depend on the pollen species as well as on the pollutant and its concentration. Therefore, pollen grains provide essential information on biological impact of pollutants and they are good candidates for biomonitoring the atmospheric and edaphic pollutions.</description><subject>Air Pollutants - toxicity</subject><subject>Air pollution</subject><subject>Alfalfa</subject><subject>Aluminum</subject><subject>Biochemistry</subject><subject>Bioindicators</subject><subject>Biomedical and Life Sciences</subject><subject>Biomonitoring</subject><subject>Biotechnology</subject><subject>buds</subject><subject>Carmine - analogs & derivatives</subject><subject>Cell Survival - drug effects</subject><subject>Cercis siliquastrum</subject><subject>Economics</subject><subject>Environmental impact</subject><subject>Environmental monitoring</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental Pollutants - toxicity</subject><subject>Environmental Pollution - analysis</subject><subject>Fabaceae - cytology</subject><subject>Fabaceae - drug effects</subject><subject>Fabaceae - growth & development</subject><subject>flowers</subject><subject>Flowers - cytology</subject><subject>Flowers - drug effects</subject><subject>Flowers - growth & development</subject><subject>Fluoride</subject><subject>Fluorides</subject><subject>Fluorides - toxicity</subject><subject>Grains</subject><subject>Indicator species</subject><subject>legumes</subject><subject>Life Sciences</subject><subject>Light microscopy</subject><subject>Medicago sativa</subject><subject>Medicago sativa - cytology</subject><subject>Medicago sativa - drug effects</subject><subject>Medicago sativa - growth & development</subject><subject>Melilotus - cytology</subject><subject>Melilotus - drug effects</subject><subject>Melilotus - growth & development</subject><subject>Melilotus officinalis</subject><subject>Meristem - cytology</subject><subject>Meristem - drug effects</subject><subject>Meristem - growth & development</subject><subject>Microscopy</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nutrition</subject><subject>Oncology</subject><subject>Plant populations</subject><subject>Pollen</subject><subject>Pollen - cytology</subject><subject>Pollen - drug effects</subject><subject>Pollen - ultrastructure</subject><subject>Pollutants</subject><subject>Pollution control</subject><subject>Reproducibility of Results</subject><subject>Robinia - cytology</subject><subject>Robinia - drug effects</subject><subject>Robinia - growth & development</subject><subject>Robinia pseudoacacia</subject><subject>scanning electron microscopy</subject><subject>Smelters</subject><subject>Soil</subject><subject>Soil contamination</subject><subject>Soil Pollutants - toxicity</subject><subject>Soil quality</subject><subject>Sophora - cytology</subject><subject>Sophora - drug effects</subject><subject>Sophora - growth & development</subject><subject>Sophora alopecuroides</subject><subject>Staining and Labeling - methods</subject><subject>Trifolium - cytology</subject><subject>Trifolium - drug effects</subject><subject>Trifolium - growth & development</subject><subject>Trifolium repens</subject><issn>0163-4984</issn><issn>1559-0720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUFv1DAQhS0EokvhB3CBSFy4pJ0Zx4l9hIoCUilItFwtJ7G3rrLx1k4O--9xSEGoEuIwsjT63pvxPMZeIpwgQHOakACxXEqRglI-YhsUQpXQEDxmG8Cal5WS1RF7ltItADak-FN2RIQ1chQbdnmd_LgtphtbfAvDYMfihzetH_x0KMzYF19C3N-EIWwPhQuxOB_mEH2_wvPkw1i892EXRj_l_rh9zp44MyT74v49ZlfnH67OPpUXXz9-Pnt3UXYVqanEruqo74hbw5sOW-qBeuOU4GTJuaaVom5a66wUvQKoQbXoQEIjpABn-TF7u9ruY7ibbZr0zqfODoMZbZiTRiRBVFPF_4_moyhZK6wy-uYBehvmOOZ__KLyFlCLTOFKdTGkFK3T--h3Jh4ypJdY9BqLXmqJRcuseXXvPLc72_9R_M4hA7QCab-c0ca_R__b9fUqciZos40-6evvGapy0ELVEvhPsMufmw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Malayeri, Behrooz Eshghi</creator><creator>Noori, Mitra</creator><creator>Jafari, Mehrana</creator><general>Springer-Verlag</general><general>Humana Press Inc</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QP</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TV</scope></search><sort><creationdate>20120601</creationdate><title>Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring</title><author>Malayeri, Behrooz Eshghi ; Noori, Mitra ; Jafari, Mehrana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1c4c2dc23ea37c1b2d02daf9532e2ff7b8567befe85d900609b1f08075850fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air Pollutants - toxicity</topic><topic>Air pollution</topic><topic>Alfalfa</topic><topic>Aluminum</topic><topic>Biochemistry</topic><topic>Bioindicators</topic><topic>Biomedical and Life Sciences</topic><topic>Biomonitoring</topic><topic>Biotechnology</topic><topic>buds</topic><topic>Carmine - analogs & derivatives</topic><topic>Cell Survival - drug effects</topic><topic>Cercis siliquastrum</topic><topic>Economics</topic><topic>Environmental impact</topic><topic>Environmental monitoring</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental Pollutants - toxicity</topic><topic>Environmental Pollution - analysis</topic><topic>Fabaceae - cytology</topic><topic>Fabaceae - drug effects</topic><topic>Fabaceae - growth & development</topic><topic>flowers</topic><topic>Flowers - cytology</topic><topic>Flowers - drug effects</topic><topic>Flowers - growth & development</topic><topic>Fluoride</topic><topic>Fluorides</topic><topic>Fluorides - toxicity</topic><topic>Grains</topic><topic>Indicator species</topic><topic>legumes</topic><topic>Life Sciences</topic><topic>Light microscopy</topic><topic>Medicago sativa</topic><topic>Medicago sativa - cytology</topic><topic>Medicago sativa - drug effects</topic><topic>Medicago sativa - growth & development</topic><topic>Melilotus - cytology</topic><topic>Melilotus - drug effects</topic><topic>Melilotus - growth & development</topic><topic>Melilotus officinalis</topic><topic>Meristem - cytology</topic><topic>Meristem - drug effects</topic><topic>Meristem - growth & development</topic><topic>Microscopy</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nutrition</topic><topic>Oncology</topic><topic>Plant populations</topic><topic>Pollen</topic><topic>Pollen - cytology</topic><topic>Pollen - drug effects</topic><topic>Pollen - ultrastructure</topic><topic>Pollutants</topic><topic>Pollution control</topic><topic>Reproducibility of Results</topic><topic>Robinia - cytology</topic><topic>Robinia - drug effects</topic><topic>Robinia - growth & development</topic><topic>Robinia pseudoacacia</topic><topic>scanning electron microscopy</topic><topic>Smelters</topic><topic>Soil</topic><topic>Soil contamination</topic><topic>Soil Pollutants - toxicity</topic><topic>Soil quality</topic><topic>Sophora - cytology</topic><topic>Sophora - drug effects</topic><topic>Sophora - growth & development</topic><topic>Sophora alopecuroides</topic><topic>Staining and Labeling - methods</topic><topic>Trifolium - cytology</topic><topic>Trifolium - drug effects</topic><topic>Trifolium - growth & development</topic><topic>Trifolium repens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malayeri, Behrooz Eshghi</creatorcontrib><creatorcontrib>Noori, Mitra</creatorcontrib><creatorcontrib>Jafari, Mehrana</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><jtitle>Biological trace element research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malayeri, Behrooz Eshghi</au><au>Noori, Mitra</au><au>Jafari, Mehrana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring</atitle><jtitle>Biological trace element research</jtitle><stitle>Biol Trace Elem Res</stitle><addtitle>Biol Trace Elem Res</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>147</volume><issue>1-3</issue><spage>315</spage><epage>319</epage><pages>315-319</pages><issn>0163-4984</issn><eissn>1559-0720</eissn><abstract>The methods using plants for biomonitoring of air and soil quality are simple, cheap, and fast and can supplement the classical physicochemical methods. In this study, biological pollen characterization of some collected legume species from an aluminum smelter area in Iran (IRALCO) was carried out to determine the actual value of pollen as a bioindicator of the effects of soil and atmospheric pollution. Young buds and flowers of six legumes (Cercis siliquastrum L., Medicago sativa L., Robinia pseudoacacia L., Melilotus officinalis (L.) lam, Trifolium repens L., and Sophora alopecuroides L.) in polluted and control plants were removed and compared. Studies of light and electron microscopic preparation showed some abnormalities during pollen development in affect of fluoride pollution. The viability of pollen grains estimated by staining with acetocarmine shows sharp differences in smearing advanced pollen grains from abnormal ones. Except M. officinalis, the pollen grains of C. siliquastrum, M. sativa, R. pseudoacacia, T. repens, and S. alopecuroides in polluted areas showed light, partial, or no staining with acetocarmine, whereas almost all of the control ones clearly stained. Observation of the pollen grains by light microscopy and scanning electron microscopy showed the significant effect of fluoride on shapes and sizes of pollen grains. The stimulation and inhibition of these pollen characteristics depend on the pollen species as well as on the pollutant and its concentration. Therefore, pollen grains provide essential information on biological impact of pollutants and they are good candidates for biomonitoring the atmospheric and edaphic pollutions.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>22161315</pmid><doi>10.1007/s12011-011-9290-8</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-4984 |
ispartof | Biological trace element research, 2012-06, Vol.147 (1-3), p.315-319 |
issn | 0163-4984 1559-0720 |
language | eng |
recordid | cdi_proquest_miscellaneous_1125226243 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Air Pollutants - toxicity Air pollution Alfalfa Aluminum Biochemistry Bioindicators Biomedical and Life Sciences Biomonitoring Biotechnology buds Carmine - analogs & derivatives Cell Survival - drug effects Cercis siliquastrum Economics Environmental impact Environmental monitoring Environmental Monitoring - methods Environmental Pollutants - toxicity Environmental Pollution - analysis Fabaceae - cytology Fabaceae - drug effects Fabaceae - growth & development flowers Flowers - cytology Flowers - drug effects Flowers - growth & development Fluoride Fluorides Fluorides - toxicity Grains Indicator species legumes Life Sciences Light microscopy Medicago sativa Medicago sativa - cytology Medicago sativa - drug effects Medicago sativa - growth & development Melilotus - cytology Melilotus - drug effects Melilotus - growth & development Melilotus officinalis Meristem - cytology Meristem - drug effects Meristem - growth & development Microscopy Microscopy, Electron, Scanning Nutrition Oncology Plant populations Pollen Pollen - cytology Pollen - drug effects Pollen - ultrastructure Pollutants Pollution control Reproducibility of Results Robinia - cytology Robinia - drug effects Robinia - growth & development Robinia pseudoacacia scanning electron microscopy Smelters Soil Soil contamination Soil Pollutants - toxicity Soil quality Sophora - cytology Sophora - drug effects Sophora - growth & development Sophora alopecuroides Staining and Labeling - methods Trifolium - cytology Trifolium - drug effects Trifolium - growth & development Trifolium repens |
title | Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20Pollen%20Viability%20and%20Morphology%20for%20Fluoride%20Pollution%20Biomonitoring&rft.jtitle=Biological%20trace%20element%20research&rft.au=Malayeri,%20Behrooz%20Eshghi&rft.date=2012-06-01&rft.volume=147&rft.issue=1-3&rft.spage=315&rft.epage=319&rft.pages=315-319&rft.issn=0163-4984&rft.eissn=1559-0720&rft_id=info:doi/10.1007/s12011-011-9290-8&rft_dat=%3Cproquest_cross%3E2672750751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017609065&rft_id=info:pmid/22161315&rfr_iscdi=true |