Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring

The methods using plants for biomonitoring of air and soil quality are simple, cheap, and fast and can supplement the classical physicochemical methods. In this study, biological pollen characterization of some collected legume species from an aluminum smelter area in Iran (IRALCO) was carried out t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological trace element research 2012-06, Vol.147 (1-3), p.315-319
Hauptverfasser: Malayeri, Behrooz Eshghi, Noori, Mitra, Jafari, Mehrana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 319
container_issue 1-3
container_start_page 315
container_title Biological trace element research
container_volume 147
creator Malayeri, Behrooz Eshghi
Noori, Mitra
Jafari, Mehrana
description The methods using plants for biomonitoring of air and soil quality are simple, cheap, and fast and can supplement the classical physicochemical methods. In this study, biological pollen characterization of some collected legume species from an aluminum smelter area in Iran (IRALCO) was carried out to determine the actual value of pollen as a bioindicator of the effects of soil and atmospheric pollution. Young buds and flowers of six legumes (Cercis siliquastrum L., Medicago sativa L., Robinia pseudoacacia L., Melilotus officinalis (L.) lam, Trifolium repens L., and Sophora alopecuroides L.) in polluted and control plants were removed and compared. Studies of light and electron microscopic preparation showed some abnormalities during pollen development in affect of fluoride pollution. The viability of pollen grains estimated by staining with acetocarmine shows sharp differences in smearing advanced pollen grains from abnormal ones. Except M. officinalis, the pollen grains of C. siliquastrum, M. sativa, R. pseudoacacia, T. repens, and S. alopecuroides in polluted areas showed light, partial, or no staining with acetocarmine, whereas almost all of the control ones clearly stained. Observation of the pollen grains by light microscopy and scanning electron microscopy showed the significant effect of fluoride on shapes and sizes of pollen grains. The stimulation and inhibition of these pollen characteristics depend on the pollen species as well as on the pollutant and its concentration. Therefore, pollen grains provide essential information on biological impact of pollutants and they are good candidates for biomonitoring the atmospheric and edaphic pollutions.
doi_str_mv 10.1007/s12011-011-9290-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1125226243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672750751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1c4c2dc23ea37c1b2d02daf9532e2ff7b8567befe85d900609b1f08075850fe3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhB3CBSFy4pJ0Zx4l9hIoCUilItFwtJ7G3rrLx1k4O--9xSEGoEuIwsjT63pvxPMZeIpwgQHOakACxXEqRglI-YhsUQpXQEDxmG8Cal5WS1RF7ltItADak-FN2RIQ1chQbdnmd_LgtphtbfAvDYMfihzetH_x0KMzYF19C3N-EIWwPhQuxOB_mEH2_wvPkw1i892EXRj_l_rh9zp44MyT74v49ZlfnH67OPpUXXz9-Pnt3UXYVqanEruqo74hbw5sOW-qBeuOU4GTJuaaVom5a66wUvQKoQbXoQEIjpABn-TF7u9ruY7ibbZr0zqfODoMZbZiTRiRBVFPF_4_moyhZK6wy-uYBehvmOOZ__KLyFlCLTOFKdTGkFK3T--h3Jh4ypJdY9BqLXmqJRcuseXXvPLc72_9R_M4hA7QCab-c0ca_R__b9fUqciZos40-6evvGapy0ELVEvhPsMufmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017609065</pqid></control><display><type>article</type><title>Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Malayeri, Behrooz Eshghi ; Noori, Mitra ; Jafari, Mehrana</creator><creatorcontrib>Malayeri, Behrooz Eshghi ; Noori, Mitra ; Jafari, Mehrana</creatorcontrib><description>The methods using plants for biomonitoring of air and soil quality are simple, cheap, and fast and can supplement the classical physicochemical methods. In this study, biological pollen characterization of some collected legume species from an aluminum smelter area in Iran (IRALCO) was carried out to determine the actual value of pollen as a bioindicator of the effects of soil and atmospheric pollution. Young buds and flowers of six legumes (Cercis siliquastrum L., Medicago sativa L., Robinia pseudoacacia L., Melilotus officinalis (L.) lam, Trifolium repens L., and Sophora alopecuroides L.) in polluted and control plants were removed and compared. Studies of light and electron microscopic preparation showed some abnormalities during pollen development in affect of fluoride pollution. The viability of pollen grains estimated by staining with acetocarmine shows sharp differences in smearing advanced pollen grains from abnormal ones. Except M. officinalis, the pollen grains of C. siliquastrum, M. sativa, R. pseudoacacia, T. repens, and S. alopecuroides in polluted areas showed light, partial, or no staining with acetocarmine, whereas almost all of the control ones clearly stained. Observation of the pollen grains by light microscopy and scanning electron microscopy showed the significant effect of fluoride on shapes and sizes of pollen grains. The stimulation and inhibition of these pollen characteristics depend on the pollen species as well as on the pollutant and its concentration. Therefore, pollen grains provide essential information on biological impact of pollutants and they are good candidates for biomonitoring the atmospheric and edaphic pollutions.</description><identifier>ISSN: 0163-4984</identifier><identifier>EISSN: 1559-0720</identifier><identifier>DOI: 10.1007/s12011-011-9290-8</identifier><identifier>PMID: 22161315</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject><![CDATA[Air Pollutants - toxicity ; Air pollution ; Alfalfa ; Aluminum ; Biochemistry ; Bioindicators ; Biomedical and Life Sciences ; Biomonitoring ; Biotechnology ; buds ; Carmine - analogs & derivatives ; Cell Survival - drug effects ; Cercis siliquastrum ; Economics ; Environmental impact ; Environmental monitoring ; Environmental Monitoring - methods ; Environmental Pollutants - toxicity ; Environmental Pollution - analysis ; Fabaceae - cytology ; Fabaceae - drug effects ; Fabaceae - growth & development ; flowers ; Flowers - cytology ; Flowers - drug effects ; Flowers - growth & development ; Fluoride ; Fluorides ; Fluorides - toxicity ; Grains ; Indicator species ; legumes ; Life Sciences ; Light microscopy ; Medicago sativa ; Medicago sativa - cytology ; Medicago sativa - drug effects ; Medicago sativa - growth & development ; Melilotus - cytology ; Melilotus - drug effects ; Melilotus - growth & development ; Melilotus officinalis ; Meristem - cytology ; Meristem - drug effects ; Meristem - growth & development ; Microscopy ; Microscopy, Electron, Scanning ; Nutrition ; Oncology ; Plant populations ; Pollen ; Pollen - cytology ; Pollen - drug effects ; Pollen - ultrastructure ; Pollutants ; Pollution control ; Reproducibility of Results ; Robinia - cytology ; Robinia - drug effects ; Robinia - growth & development ; Robinia pseudoacacia ; scanning electron microscopy ; Smelters ; Soil ; Soil contamination ; Soil Pollutants - toxicity ; Soil quality ; Sophora - cytology ; Sophora - drug effects ; Sophora - growth & development ; Sophora alopecuroides ; Staining and Labeling - methods ; Trifolium - cytology ; Trifolium - drug effects ; Trifolium - growth & development ; Trifolium repens]]></subject><ispartof>Biological trace element research, 2012-06, Vol.147 (1-3), p.315-319</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1c4c2dc23ea37c1b2d02daf9532e2ff7b8567befe85d900609b1f08075850fe3</citedby><cites>FETCH-LOGICAL-c429t-1c4c2dc23ea37c1b2d02daf9532e2ff7b8567befe85d900609b1f08075850fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12011-011-9290-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12011-011-9290-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22161315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malayeri, Behrooz Eshghi</creatorcontrib><creatorcontrib>Noori, Mitra</creatorcontrib><creatorcontrib>Jafari, Mehrana</creatorcontrib><title>Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring</title><title>Biological trace element research</title><addtitle>Biol Trace Elem Res</addtitle><addtitle>Biol Trace Elem Res</addtitle><description>The methods using plants for biomonitoring of air and soil quality are simple, cheap, and fast and can supplement the classical physicochemical methods. In this study, biological pollen characterization of some collected legume species from an aluminum smelter area in Iran (IRALCO) was carried out to determine the actual value of pollen as a bioindicator of the effects of soil and atmospheric pollution. Young buds and flowers of six legumes (Cercis siliquastrum L., Medicago sativa L., Robinia pseudoacacia L., Melilotus officinalis (L.) lam, Trifolium repens L., and Sophora alopecuroides L.) in polluted and control plants were removed and compared. Studies of light and electron microscopic preparation showed some abnormalities during pollen development in affect of fluoride pollution. The viability of pollen grains estimated by staining with acetocarmine shows sharp differences in smearing advanced pollen grains from abnormal ones. Except M. officinalis, the pollen grains of C. siliquastrum, M. sativa, R. pseudoacacia, T. repens, and S. alopecuroides in polluted areas showed light, partial, or no staining with acetocarmine, whereas almost all of the control ones clearly stained. Observation of the pollen grains by light microscopy and scanning electron microscopy showed the significant effect of fluoride on shapes and sizes of pollen grains. The stimulation and inhibition of these pollen characteristics depend on the pollen species as well as on the pollutant and its concentration. Therefore, pollen grains provide essential information on biological impact of pollutants and they are good candidates for biomonitoring the atmospheric and edaphic pollutions.</description><subject>Air Pollutants - toxicity</subject><subject>Air pollution</subject><subject>Alfalfa</subject><subject>Aluminum</subject><subject>Biochemistry</subject><subject>Bioindicators</subject><subject>Biomedical and Life Sciences</subject><subject>Biomonitoring</subject><subject>Biotechnology</subject><subject>buds</subject><subject>Carmine - analogs &amp; derivatives</subject><subject>Cell Survival - drug effects</subject><subject>Cercis siliquastrum</subject><subject>Economics</subject><subject>Environmental impact</subject><subject>Environmental monitoring</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental Pollutants - toxicity</subject><subject>Environmental Pollution - analysis</subject><subject>Fabaceae - cytology</subject><subject>Fabaceae - drug effects</subject><subject>Fabaceae - growth &amp; development</subject><subject>flowers</subject><subject>Flowers - cytology</subject><subject>Flowers - drug effects</subject><subject>Flowers - growth &amp; development</subject><subject>Fluoride</subject><subject>Fluorides</subject><subject>Fluorides - toxicity</subject><subject>Grains</subject><subject>Indicator species</subject><subject>legumes</subject><subject>Life Sciences</subject><subject>Light microscopy</subject><subject>Medicago sativa</subject><subject>Medicago sativa - cytology</subject><subject>Medicago sativa - drug effects</subject><subject>Medicago sativa - growth &amp; development</subject><subject>Melilotus - cytology</subject><subject>Melilotus - drug effects</subject><subject>Melilotus - growth &amp; development</subject><subject>Melilotus officinalis</subject><subject>Meristem - cytology</subject><subject>Meristem - drug effects</subject><subject>Meristem - growth &amp; development</subject><subject>Microscopy</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nutrition</subject><subject>Oncology</subject><subject>Plant populations</subject><subject>Pollen</subject><subject>Pollen - cytology</subject><subject>Pollen - drug effects</subject><subject>Pollen - ultrastructure</subject><subject>Pollutants</subject><subject>Pollution control</subject><subject>Reproducibility of Results</subject><subject>Robinia - cytology</subject><subject>Robinia - drug effects</subject><subject>Robinia - growth &amp; development</subject><subject>Robinia pseudoacacia</subject><subject>scanning electron microscopy</subject><subject>Smelters</subject><subject>Soil</subject><subject>Soil contamination</subject><subject>Soil Pollutants - toxicity</subject><subject>Soil quality</subject><subject>Sophora - cytology</subject><subject>Sophora - drug effects</subject><subject>Sophora - growth &amp; development</subject><subject>Sophora alopecuroides</subject><subject>Staining and Labeling - methods</subject><subject>Trifolium - cytology</subject><subject>Trifolium - drug effects</subject><subject>Trifolium - growth &amp; development</subject><subject>Trifolium repens</subject><issn>0163-4984</issn><issn>1559-0720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUFv1DAQhS0EokvhB3CBSFy4pJ0Zx4l9hIoCUilItFwtJ7G3rrLx1k4O--9xSEGoEuIwsjT63pvxPMZeIpwgQHOakACxXEqRglI-YhsUQpXQEDxmG8Cal5WS1RF7ltItADak-FN2RIQ1chQbdnmd_LgtphtbfAvDYMfihzetH_x0KMzYF19C3N-EIWwPhQuxOB_mEH2_wvPkw1i892EXRj_l_rh9zp44MyT74v49ZlfnH67OPpUXXz9-Pnt3UXYVqanEruqo74hbw5sOW-qBeuOU4GTJuaaVom5a66wUvQKoQbXoQEIjpABn-TF7u9ruY7ibbZr0zqfODoMZbZiTRiRBVFPF_4_moyhZK6wy-uYBehvmOOZ__KLyFlCLTOFKdTGkFK3T--h3Jh4ypJdY9BqLXmqJRcuseXXvPLc72_9R_M4hA7QCab-c0ca_R__b9fUqciZos40-6evvGapy0ELVEvhPsMufmw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Malayeri, Behrooz Eshghi</creator><creator>Noori, Mitra</creator><creator>Jafari, Mehrana</creator><general>Springer-Verlag</general><general>Humana Press Inc</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QP</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TV</scope></search><sort><creationdate>20120601</creationdate><title>Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring</title><author>Malayeri, Behrooz Eshghi ; Noori, Mitra ; Jafari, Mehrana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1c4c2dc23ea37c1b2d02daf9532e2ff7b8567befe85d900609b1f08075850fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air Pollutants - toxicity</topic><topic>Air pollution</topic><topic>Alfalfa</topic><topic>Aluminum</topic><topic>Biochemistry</topic><topic>Bioindicators</topic><topic>Biomedical and Life Sciences</topic><topic>Biomonitoring</topic><topic>Biotechnology</topic><topic>buds</topic><topic>Carmine - analogs &amp; derivatives</topic><topic>Cell Survival - drug effects</topic><topic>Cercis siliquastrum</topic><topic>Economics</topic><topic>Environmental impact</topic><topic>Environmental monitoring</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental Pollutants - toxicity</topic><topic>Environmental Pollution - analysis</topic><topic>Fabaceae - cytology</topic><topic>Fabaceae - drug effects</topic><topic>Fabaceae - growth &amp; development</topic><topic>flowers</topic><topic>Flowers - cytology</topic><topic>Flowers - drug effects</topic><topic>Flowers - growth &amp; development</topic><topic>Fluoride</topic><topic>Fluorides</topic><topic>Fluorides - toxicity</topic><topic>Grains</topic><topic>Indicator species</topic><topic>legumes</topic><topic>Life Sciences</topic><topic>Light microscopy</topic><topic>Medicago sativa</topic><topic>Medicago sativa - cytology</topic><topic>Medicago sativa - drug effects</topic><topic>Medicago sativa - growth &amp; development</topic><topic>Melilotus - cytology</topic><topic>Melilotus - drug effects</topic><topic>Melilotus - growth &amp; development</topic><topic>Melilotus officinalis</topic><topic>Meristem - cytology</topic><topic>Meristem - drug effects</topic><topic>Meristem - growth &amp; development</topic><topic>Microscopy</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nutrition</topic><topic>Oncology</topic><topic>Plant populations</topic><topic>Pollen</topic><topic>Pollen - cytology</topic><topic>Pollen - drug effects</topic><topic>Pollen - ultrastructure</topic><topic>Pollutants</topic><topic>Pollution control</topic><topic>Reproducibility of Results</topic><topic>Robinia - cytology</topic><topic>Robinia - drug effects</topic><topic>Robinia - growth &amp; development</topic><topic>Robinia pseudoacacia</topic><topic>scanning electron microscopy</topic><topic>Smelters</topic><topic>Soil</topic><topic>Soil contamination</topic><topic>Soil Pollutants - toxicity</topic><topic>Soil quality</topic><topic>Sophora - cytology</topic><topic>Sophora - drug effects</topic><topic>Sophora - growth &amp; development</topic><topic>Sophora alopecuroides</topic><topic>Staining and Labeling - methods</topic><topic>Trifolium - cytology</topic><topic>Trifolium - drug effects</topic><topic>Trifolium - growth &amp; development</topic><topic>Trifolium repens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malayeri, Behrooz Eshghi</creatorcontrib><creatorcontrib>Noori, Mitra</creatorcontrib><creatorcontrib>Jafari, Mehrana</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><jtitle>Biological trace element research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malayeri, Behrooz Eshghi</au><au>Noori, Mitra</au><au>Jafari, Mehrana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring</atitle><jtitle>Biological trace element research</jtitle><stitle>Biol Trace Elem Res</stitle><addtitle>Biol Trace Elem Res</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>147</volume><issue>1-3</issue><spage>315</spage><epage>319</epage><pages>315-319</pages><issn>0163-4984</issn><eissn>1559-0720</eissn><abstract>The methods using plants for biomonitoring of air and soil quality are simple, cheap, and fast and can supplement the classical physicochemical methods. In this study, biological pollen characterization of some collected legume species from an aluminum smelter area in Iran (IRALCO) was carried out to determine the actual value of pollen as a bioindicator of the effects of soil and atmospheric pollution. Young buds and flowers of six legumes (Cercis siliquastrum L., Medicago sativa L., Robinia pseudoacacia L., Melilotus officinalis (L.) lam, Trifolium repens L., and Sophora alopecuroides L.) in polluted and control plants were removed and compared. Studies of light and electron microscopic preparation showed some abnormalities during pollen development in affect of fluoride pollution. The viability of pollen grains estimated by staining with acetocarmine shows sharp differences in smearing advanced pollen grains from abnormal ones. Except M. officinalis, the pollen grains of C. siliquastrum, M. sativa, R. pseudoacacia, T. repens, and S. alopecuroides in polluted areas showed light, partial, or no staining with acetocarmine, whereas almost all of the control ones clearly stained. Observation of the pollen grains by light microscopy and scanning electron microscopy showed the significant effect of fluoride on shapes and sizes of pollen grains. The stimulation and inhibition of these pollen characteristics depend on the pollen species as well as on the pollutant and its concentration. Therefore, pollen grains provide essential information on biological impact of pollutants and they are good candidates for biomonitoring the atmospheric and edaphic pollutions.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>22161315</pmid><doi>10.1007/s12011-011-9290-8</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-4984
ispartof Biological trace element research, 2012-06, Vol.147 (1-3), p.315-319
issn 0163-4984
1559-0720
language eng
recordid cdi_proquest_miscellaneous_1125226243
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Air Pollutants - toxicity
Air pollution
Alfalfa
Aluminum
Biochemistry
Bioindicators
Biomedical and Life Sciences
Biomonitoring
Biotechnology
buds
Carmine - analogs & derivatives
Cell Survival - drug effects
Cercis siliquastrum
Economics
Environmental impact
Environmental monitoring
Environmental Monitoring - methods
Environmental Pollutants - toxicity
Environmental Pollution - analysis
Fabaceae - cytology
Fabaceae - drug effects
Fabaceae - growth & development
flowers
Flowers - cytology
Flowers - drug effects
Flowers - growth & development
Fluoride
Fluorides
Fluorides - toxicity
Grains
Indicator species
legumes
Life Sciences
Light microscopy
Medicago sativa
Medicago sativa - cytology
Medicago sativa - drug effects
Medicago sativa - growth & development
Melilotus - cytology
Melilotus - drug effects
Melilotus - growth & development
Melilotus officinalis
Meristem - cytology
Meristem - drug effects
Meristem - growth & development
Microscopy
Microscopy, Electron, Scanning
Nutrition
Oncology
Plant populations
Pollen
Pollen - cytology
Pollen - drug effects
Pollen - ultrastructure
Pollutants
Pollution control
Reproducibility of Results
Robinia - cytology
Robinia - drug effects
Robinia - growth & development
Robinia pseudoacacia
scanning electron microscopy
Smelters
Soil
Soil contamination
Soil Pollutants - toxicity
Soil quality
Sophora - cytology
Sophora - drug effects
Sophora - growth & development
Sophora alopecuroides
Staining and Labeling - methods
Trifolium - cytology
Trifolium - drug effects
Trifolium - growth & development
Trifolium repens
title Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20Pollen%20Viability%20and%20Morphology%20for%20Fluoride%20Pollution%20Biomonitoring&rft.jtitle=Biological%20trace%20element%20research&rft.au=Malayeri,%20Behrooz%20Eshghi&rft.date=2012-06-01&rft.volume=147&rft.issue=1-3&rft.spage=315&rft.epage=319&rft.pages=315-319&rft.issn=0163-4984&rft.eissn=1559-0720&rft_id=info:doi/10.1007/s12011-011-9290-8&rft_dat=%3Cproquest_cross%3E2672750751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017609065&rft_id=info:pmid/22161315&rfr_iscdi=true