NOISY STOCHASTIC GAMES
This paper establishes existence of a stationary Markov perfect equilibrium in general stochastic games with noise—a component of the state that is nonatomically distributed and not directly affected by the previous period's state and actions. Noise may be simply a payoff-irrelevant public rand...
Gespeichert in:
Veröffentlicht in: | Econometrica 2012-09, Vol.80 (5), p.2017-2045 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2045 |
---|---|
container_issue | 5 |
container_start_page | 2017 |
container_title | Econometrica |
container_volume | 80 |
creator | Duggan, John |
description | This paper establishes existence of a stationary Markov perfect equilibrium in general stochastic games with noise—a component of the state that is nonatomically distributed and not directly affected by the previous period's state and actions. Noise may be simply a payoff-irrelevant public randomization device, delivering known results on the existence of correlated equilibrium as a special case. More generally, noise can take the form of shocks that enter into players' stage payoffs and the transition probability on states. The existence result is applied to a model of industry dynamics and to a model of dynamic electoral competition. |
doi_str_mv | 10.3982/ECTA10125 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1124749192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23271440</jstor_id><sourcerecordid>23271440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5213-642954cfa0102d7f4a775cb4585081c0e1507bd0084df623c27913b48f9c96023</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKcHL96EgQh6qPvyNT-PpcxtMN2h9eCpZFkLG906kw3Zf29GxwRBCCSE532-j5eQWwovsVbYH6R5QoEiPyMdyoSKAAWekw6Ev0gLhZfkyvslAPBwOuTufTrOPntZPk1HSZaP094weRtk1-SiMrUvb453l3y8DvJ0FE2mw3GaTCLLkcaRYKg5s5UBCjiXFTNScjtjXHFQ1EJJOcjZHECxeSUwtig1jWdMVdpqARh3yVPr3bjma1f6bbFaeFvWtVmXzc4XlCKTTFN9QB_-oMtm59Zhu4KGYVQwBTxQzy1lXeO9K6ti4xYr4_YBKg4NFaeGAvt4NBpvTV05s7YLfwqgYEICysD1W-57UZf7_4XtK4hD4r5NLP22cb_GGCVlDOIfsBN1xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1081164805</pqid></control><display><type>article</type><title>NOISY STOCHASTIC GAMES</title><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Duggan, John</creator><creatorcontrib>Duggan, John</creatorcontrib><description>This paper establishes existence of a stationary Markov perfect equilibrium in general stochastic games with noise—a component of the state that is nonatomically distributed and not directly affected by the previous period's state and actions. Noise may be simply a payoff-irrelevant public randomization device, delivering known results on the existence of correlated equilibrium as a special case. More generally, noise can take the form of shocks that enter into players' stage payoffs and the transition probability on states. The existence result is applied to a model of industry dynamics and to a model of dynamic electoral competition.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.3982/ECTA10125</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Oxford, UK: Econometric Society</publisher><subject>Applications ; Density ; dynamic elections ; dynamic game ; Economic equilibrium ; Economic theory ; Elections ; Electoral systems ; equilibrium existence ; Exact sciences and technology ; Game theory ; industry dynamics ; Insurance, economics, finance ; Markov analysis ; Markov processes ; Mathematical analysis ; Mathematical vectors ; Mathematics ; Nash equilibrium ; Noise ; Partial differential equations ; Pay-off ; Political elections ; Politicians ; Probability and statistics ; Probability theory ; Probability theory and stochastic processes ; Reliability, life testing, quality control ; Sciences and techniques of general use ; stationary Markov perfect equilibrium ; Statistics ; Stochastic game ; Stochastic games ; Stochastic models ; Stochastic processes ; Studies ; Topological theorems ; Transition probabilities ; Voting</subject><ispartof>Econometrica, 2012-09, Vol.80 (5), p.2017-2045</ispartof><rights>Copyright © 2011 The Econometric Society</rights><rights>2012 The Econometric Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Sep 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5213-642954cfa0102d7f4a775cb4585081c0e1507bd0084df623c27913b48f9c96023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23271440$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23271440$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,830,1414,27911,27912,45561,45562,58004,58008,58237,58241</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26467027$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Duggan, John</creatorcontrib><title>NOISY STOCHASTIC GAMES</title><title>Econometrica</title><description>This paper establishes existence of a stationary Markov perfect equilibrium in general stochastic games with noise—a component of the state that is nonatomically distributed and not directly affected by the previous period's state and actions. Noise may be simply a payoff-irrelevant public randomization device, delivering known results on the existence of correlated equilibrium as a special case. More generally, noise can take the form of shocks that enter into players' stage payoffs and the transition probability on states. The existence result is applied to a model of industry dynamics and to a model of dynamic electoral competition.</description><subject>Applications</subject><subject>Density</subject><subject>dynamic elections</subject><subject>dynamic game</subject><subject>Economic equilibrium</subject><subject>Economic theory</subject><subject>Elections</subject><subject>Electoral systems</subject><subject>equilibrium existence</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>industry dynamics</subject><subject>Insurance, economics, finance</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Nash equilibrium</subject><subject>Noise</subject><subject>Partial differential equations</subject><subject>Pay-off</subject><subject>Political elections</subject><subject>Politicians</subject><subject>Probability and statistics</subject><subject>Probability theory</subject><subject>Probability theory and stochastic processes</subject><subject>Reliability, life testing, quality control</subject><subject>Sciences and techniques of general use</subject><subject>stationary Markov perfect equilibrium</subject><subject>Statistics</subject><subject>Stochastic game</subject><subject>Stochastic games</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Topological theorems</subject><subject>Transition probabilities</subject><subject>Voting</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKcHL96EgQh6qPvyNT-PpcxtMN2h9eCpZFkLG906kw3Zf29GxwRBCCSE532-j5eQWwovsVbYH6R5QoEiPyMdyoSKAAWekw6Ev0gLhZfkyvslAPBwOuTufTrOPntZPk1HSZaP094weRtk1-SiMrUvb453l3y8DvJ0FE2mw3GaTCLLkcaRYKg5s5UBCjiXFTNScjtjXHFQ1EJJOcjZHECxeSUwtig1jWdMVdpqARh3yVPr3bjma1f6bbFaeFvWtVmXzc4XlCKTTFN9QB_-oMtm59Zhu4KGYVQwBTxQzy1lXeO9K6ti4xYr4_YBKg4NFaeGAvt4NBpvTV05s7YLfwqgYEICysD1W-57UZf7_4XtK4hD4r5NLP22cb_GGCVlDOIfsBN1xg</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Duggan, John</creator><general>Econometric Society</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201209</creationdate><title>NOISY STOCHASTIC GAMES</title><author>Duggan, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5213-642954cfa0102d7f4a775cb4585081c0e1507bd0084df623c27913b48f9c96023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applications</topic><topic>Density</topic><topic>dynamic elections</topic><topic>dynamic game</topic><topic>Economic equilibrium</topic><topic>Economic theory</topic><topic>Elections</topic><topic>Electoral systems</topic><topic>equilibrium existence</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>industry dynamics</topic><topic>Insurance, economics, finance</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Nash equilibrium</topic><topic>Noise</topic><topic>Partial differential equations</topic><topic>Pay-off</topic><topic>Political elections</topic><topic>Politicians</topic><topic>Probability and statistics</topic><topic>Probability theory</topic><topic>Probability theory and stochastic processes</topic><topic>Reliability, life testing, quality control</topic><topic>Sciences and techniques of general use</topic><topic>stationary Markov perfect equilibrium</topic><topic>Statistics</topic><topic>Stochastic game</topic><topic>Stochastic games</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Topological theorems</topic><topic>Transition probabilities</topic><topic>Voting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duggan, John</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duggan, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NOISY STOCHASTIC GAMES</atitle><jtitle>Econometrica</jtitle><date>2012-09</date><risdate>2012</risdate><volume>80</volume><issue>5</issue><spage>2017</spage><epage>2045</epage><pages>2017-2045</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>This paper establishes existence of a stationary Markov perfect equilibrium in general stochastic games with noise—a component of the state that is nonatomically distributed and not directly affected by the previous period's state and actions. Noise may be simply a payoff-irrelevant public randomization device, delivering known results on the existence of correlated equilibrium as a special case. More generally, noise can take the form of shocks that enter into players' stage payoffs and the transition probability on states. The existence result is applied to a model of industry dynamics and to a model of dynamic electoral competition.</abstract><cop>Oxford, UK</cop><pub>Econometric Society</pub><doi>10.3982/ECTA10125</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9682 |
ispartof | Econometrica, 2012-09, Vol.80 (5), p.2017-2045 |
issn | 0012-9682 1468-0262 |
language | eng |
recordid | cdi_proquest_miscellaneous_1124749192 |
source | Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Applications Density dynamic elections dynamic game Economic equilibrium Economic theory Elections Electoral systems equilibrium existence Exact sciences and technology Game theory industry dynamics Insurance, economics, finance Markov analysis Markov processes Mathematical analysis Mathematical vectors Mathematics Nash equilibrium Noise Partial differential equations Pay-off Political elections Politicians Probability and statistics Probability theory Probability theory and stochastic processes Reliability, life testing, quality control Sciences and techniques of general use stationary Markov perfect equilibrium Statistics Stochastic game Stochastic games Stochastic models Stochastic processes Studies Topological theorems Transition probabilities Voting |
title | NOISY STOCHASTIC GAMES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NOISY%20STOCHASTIC%20GAMES&rft.jtitle=Econometrica&rft.au=Duggan,%20John&rft.date=2012-09&rft.volume=80&rft.issue=5&rft.spage=2017&rft.epage=2045&rft.pages=2017-2045&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.3982/ECTA10125&rft_dat=%3Cjstor_proqu%3E23271440%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1081164805&rft_id=info:pmid/&rft_jstor_id=23271440&rfr_iscdi=true |