NOISY STOCHASTIC GAMES

This paper establishes existence of a stationary Markov perfect equilibrium in general stochastic games with noise—a component of the state that is nonatomically distributed and not directly affected by the previous period's state and actions. Noise may be simply a payoff-irrelevant public rand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica 2012-09, Vol.80 (5), p.2017-2045
1. Verfasser: Duggan, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2045
container_issue 5
container_start_page 2017
container_title Econometrica
container_volume 80
creator Duggan, John
description This paper establishes existence of a stationary Markov perfect equilibrium in general stochastic games with noise—a component of the state that is nonatomically distributed and not directly affected by the previous period's state and actions. Noise may be simply a payoff-irrelevant public randomization device, delivering known results on the existence of correlated equilibrium as a special case. More generally, noise can take the form of shocks that enter into players' stage payoffs and the transition probability on states. The existence result is applied to a model of industry dynamics and to a model of dynamic electoral competition.
doi_str_mv 10.3982/ECTA10125
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1124749192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23271440</jstor_id><sourcerecordid>23271440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5213-642954cfa0102d7f4a775cb4585081c0e1507bd0084df623c27913b48f9c96023</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKcHL96EgQh6qPvyNT-PpcxtMN2h9eCpZFkLG906kw3Zf29GxwRBCCSE532-j5eQWwovsVbYH6R5QoEiPyMdyoSKAAWekw6Ev0gLhZfkyvslAPBwOuTufTrOPntZPk1HSZaP094weRtk1-SiMrUvb453l3y8DvJ0FE2mw3GaTCLLkcaRYKg5s5UBCjiXFTNScjtjXHFQ1EJJOcjZHECxeSUwtig1jWdMVdpqARh3yVPr3bjma1f6bbFaeFvWtVmXzc4XlCKTTFN9QB_-oMtm59Zhu4KGYVQwBTxQzy1lXeO9K6ti4xYr4_YBKg4NFaeGAvt4NBpvTV05s7YLfwqgYEICysD1W-57UZf7_4XtK4hD4r5NLP22cb_GGCVlDOIfsBN1xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1081164805</pqid></control><display><type>article</type><title>NOISY STOCHASTIC GAMES</title><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Duggan, John</creator><creatorcontrib>Duggan, John</creatorcontrib><description>This paper establishes existence of a stationary Markov perfect equilibrium in general stochastic games with noise—a component of the state that is nonatomically distributed and not directly affected by the previous period's state and actions. Noise may be simply a payoff-irrelevant public randomization device, delivering known results on the existence of correlated equilibrium as a special case. More generally, noise can take the form of shocks that enter into players' stage payoffs and the transition probability on states. The existence result is applied to a model of industry dynamics and to a model of dynamic electoral competition.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.3982/ECTA10125</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Oxford, UK: Econometric Society</publisher><subject>Applications ; Density ; dynamic elections ; dynamic game ; Economic equilibrium ; Economic theory ; Elections ; Electoral systems ; equilibrium existence ; Exact sciences and technology ; Game theory ; industry dynamics ; Insurance, economics, finance ; Markov analysis ; Markov processes ; Mathematical analysis ; Mathematical vectors ; Mathematics ; Nash equilibrium ; Noise ; Partial differential equations ; Pay-off ; Political elections ; Politicians ; Probability and statistics ; Probability theory ; Probability theory and stochastic processes ; Reliability, life testing, quality control ; Sciences and techniques of general use ; stationary Markov perfect equilibrium ; Statistics ; Stochastic game ; Stochastic games ; Stochastic models ; Stochastic processes ; Studies ; Topological theorems ; Transition probabilities ; Voting</subject><ispartof>Econometrica, 2012-09, Vol.80 (5), p.2017-2045</ispartof><rights>Copyright © 2011 The Econometric Society</rights><rights>2012 The Econometric Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Sep 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5213-642954cfa0102d7f4a775cb4585081c0e1507bd0084df623c27913b48f9c96023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23271440$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23271440$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,830,1414,27911,27912,45561,45562,58004,58008,58237,58241</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26467027$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Duggan, John</creatorcontrib><title>NOISY STOCHASTIC GAMES</title><title>Econometrica</title><description>This paper establishes existence of a stationary Markov perfect equilibrium in general stochastic games with noise—a component of the state that is nonatomically distributed and not directly affected by the previous period's state and actions. Noise may be simply a payoff-irrelevant public randomization device, delivering known results on the existence of correlated equilibrium as a special case. More generally, noise can take the form of shocks that enter into players' stage payoffs and the transition probability on states. The existence result is applied to a model of industry dynamics and to a model of dynamic electoral competition.</description><subject>Applications</subject><subject>Density</subject><subject>dynamic elections</subject><subject>dynamic game</subject><subject>Economic equilibrium</subject><subject>Economic theory</subject><subject>Elections</subject><subject>Electoral systems</subject><subject>equilibrium existence</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>industry dynamics</subject><subject>Insurance, economics, finance</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Nash equilibrium</subject><subject>Noise</subject><subject>Partial differential equations</subject><subject>Pay-off</subject><subject>Political elections</subject><subject>Politicians</subject><subject>Probability and statistics</subject><subject>Probability theory</subject><subject>Probability theory and stochastic processes</subject><subject>Reliability, life testing, quality control</subject><subject>Sciences and techniques of general use</subject><subject>stationary Markov perfect equilibrium</subject><subject>Statistics</subject><subject>Stochastic game</subject><subject>Stochastic games</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Topological theorems</subject><subject>Transition probabilities</subject><subject>Voting</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKcHL96EgQh6qPvyNT-PpcxtMN2h9eCpZFkLG906kw3Zf29GxwRBCCSE532-j5eQWwovsVbYH6R5QoEiPyMdyoSKAAWekw6Ev0gLhZfkyvslAPBwOuTufTrOPntZPk1HSZaP094weRtk1-SiMrUvb453l3y8DvJ0FE2mw3GaTCLLkcaRYKg5s5UBCjiXFTNScjtjXHFQ1EJJOcjZHECxeSUwtig1jWdMVdpqARh3yVPr3bjma1f6bbFaeFvWtVmXzc4XlCKTTFN9QB_-oMtm59Zhu4KGYVQwBTxQzy1lXeO9K6ti4xYr4_YBKg4NFaeGAvt4NBpvTV05s7YLfwqgYEICysD1W-57UZf7_4XtK4hD4r5NLP22cb_GGCVlDOIfsBN1xg</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Duggan, John</creator><general>Econometric Society</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201209</creationdate><title>NOISY STOCHASTIC GAMES</title><author>Duggan, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5213-642954cfa0102d7f4a775cb4585081c0e1507bd0084df623c27913b48f9c96023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applications</topic><topic>Density</topic><topic>dynamic elections</topic><topic>dynamic game</topic><topic>Economic equilibrium</topic><topic>Economic theory</topic><topic>Elections</topic><topic>Electoral systems</topic><topic>equilibrium existence</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>industry dynamics</topic><topic>Insurance, economics, finance</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Nash equilibrium</topic><topic>Noise</topic><topic>Partial differential equations</topic><topic>Pay-off</topic><topic>Political elections</topic><topic>Politicians</topic><topic>Probability and statistics</topic><topic>Probability theory</topic><topic>Probability theory and stochastic processes</topic><topic>Reliability, life testing, quality control</topic><topic>Sciences and techniques of general use</topic><topic>stationary Markov perfect equilibrium</topic><topic>Statistics</topic><topic>Stochastic game</topic><topic>Stochastic games</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Topological theorems</topic><topic>Transition probabilities</topic><topic>Voting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duggan, John</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duggan, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NOISY STOCHASTIC GAMES</atitle><jtitle>Econometrica</jtitle><date>2012-09</date><risdate>2012</risdate><volume>80</volume><issue>5</issue><spage>2017</spage><epage>2045</epage><pages>2017-2045</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>This paper establishes existence of a stationary Markov perfect equilibrium in general stochastic games with noise—a component of the state that is nonatomically distributed and not directly affected by the previous period's state and actions. Noise may be simply a payoff-irrelevant public randomization device, delivering known results on the existence of correlated equilibrium as a special case. More generally, noise can take the form of shocks that enter into players' stage payoffs and the transition probability on states. The existence result is applied to a model of industry dynamics and to a model of dynamic electoral competition.</abstract><cop>Oxford, UK</cop><pub>Econometric Society</pub><doi>10.3982/ECTA10125</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-9682
ispartof Econometrica, 2012-09, Vol.80 (5), p.2017-2045
issn 0012-9682
1468-0262
language eng
recordid cdi_proquest_miscellaneous_1124749192
source Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Applications
Density
dynamic elections
dynamic game
Economic equilibrium
Economic theory
Elections
Electoral systems
equilibrium existence
Exact sciences and technology
Game theory
industry dynamics
Insurance, economics, finance
Markov analysis
Markov processes
Mathematical analysis
Mathematical vectors
Mathematics
Nash equilibrium
Noise
Partial differential equations
Pay-off
Political elections
Politicians
Probability and statistics
Probability theory
Probability theory and stochastic processes
Reliability, life testing, quality control
Sciences and techniques of general use
stationary Markov perfect equilibrium
Statistics
Stochastic game
Stochastic games
Stochastic models
Stochastic processes
Studies
Topological theorems
Transition probabilities
Voting
title NOISY STOCHASTIC GAMES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NOISY%20STOCHASTIC%20GAMES&rft.jtitle=Econometrica&rft.au=Duggan,%20John&rft.date=2012-09&rft.volume=80&rft.issue=5&rft.spage=2017&rft.epage=2045&rft.pages=2017-2045&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.3982/ECTA10125&rft_dat=%3Cjstor_proqu%3E23271440%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1081164805&rft_id=info:pmid/&rft_jstor_id=23271440&rfr_iscdi=true