The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure
► Barley alanine aminotransferase was purified and kinetically characterized. ► It can synthesize aspartate with 10% efficiency compared to alanine. ► We have solved the structure of barley AlaAT at 2.7Å resolution. ► This is the first example of a plant AlaAT structure. In this paper we describe th...
Gespeichert in:
Veröffentlicht in: | Arch. Biochem. Biophys 2012-12, Vol.528 (1), p.90-101 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | 1 |
container_start_page | 90 |
container_title | Arch. Biochem. Biophys |
container_volume | 528 |
creator | Duff, Stephen M.G. Rydel, Timothy J. McClerren, Amanda L. Zhang, Wenlan Li, Jimmy Y. Sturman, Eric J. Halls, Coralie Chen, Songyang Zeng, Jiamin Peng, Jiexin Kretzler, Crystal N. Evdokimov, Artem |
description | ► Barley alanine aminotransferase was purified and kinetically characterized. ► It can synthesize aspartate with 10% efficiency compared to alanine. ► We have solved the structure of barley AlaAT at 2.7Å resolution. ► This is the first example of a plant AlaAT structure.
In this paper we describe the expression, purification, kinetics and biophysical characterization of alanine aminotransferase (AlaAT) from the barley plant (Hordeum vulgare). This dimeric PLP-dependent enzyme is a pivotal element of several key metabolic pathways from nitrogen assimilation to carbon metabolism, and its introduction into transgenic plants results in increased yield. The enzyme exhibits a bi-bi ping-pong reaction mechanism with a Km for alanine, 2-oxoglutarate, glutamate and pyruvate of 3.8, 0.3, 0.8 and 0.2mM, respectively. Barley AlaAT catalyzes the forward (alanine-forming) reaction with a kcat of 25.6s−1, the reverse (glutamate-forming) reaction with kcat of 12.1s−1 and an equilibrium constant of ∼0.5. The enzyme is also able to utilize aspartate and oxaloacetate with ∼10% efficiency as compared to the native substrates, which makes it much more specific than related bacterial/archaeal enzymes (that also have lower Km values). We have crystallized barley AlaAT in complex with PLP and l-cycloserine and solved the structure of this complex at 2.7Å resolution. This is the first example of a plant AlaAT structure, and it reveals a canonical aminotransferase fold similar to structures of the Thermotoga maritima, Pyrococcus furiosus, and human enzymes. This structure bridges our structural understanding of AlaAT mechanism between three kingdoms of life and allows us to shed some light on the specifics of the catalysis performed by these proteins. |
doi_str_mv | 10.1016/j.abb.2012.06.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1122627091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003986112002512</els_id><sourcerecordid>1122627091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-5279bebc1f445e8d3d4a477e0729178c9572104f62b5326820e77f2c3c320aa23</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EokvhAbiAxalIJIwdJ07U06oqLFIlDmzPluNMdr1K4mI7Ky0vwGvjbQpHTpZG3__JMz8hbxnkDFj1-ZDrts05MJ5DlQNUz8iKQVNlUNTiOVkBQJE1dcUuyKsQDgCMiYq_JBecyxJKwVfk93aP9Hb6dRrd4HYn6nqqBz3ZCake7eSi11Po0euA9Go96PX2I7XB9c6PgfbejXTjfIfzSI_zsNM-xaaOurhHT53fJVMYw6fHYZrRzfHRQY0_hagHGqKfTZw9viYvej0EfPP0XpL7L7fbm0129_3rt5v1XWaEhJiVXDYttob1QpRYd0UntJASQfKGydo0peQMRF_xtix4VXNAKXtuClNw0JoXl-TD4nUhWhWMjWj2xk0TmqgYSJFCCbpaoAfvfs4YohptMDikw6Cbg2KM84pLaFhC2YIa70Lw2KsHb0ftT0mmziWpg0olqXNJCiqVSkqZd0_6uR2x-5f420oC3i9Ar53SO2-Duv-RDCUAZ2VZQCKuFwLTrY4W_XkVnAx21p836Zz9zwf-AJDEqsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1122627091</pqid></control><display><type>article</type><title>The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Duff, Stephen M.G. ; Rydel, Timothy J. ; McClerren, Amanda L. ; Zhang, Wenlan ; Li, Jimmy Y. ; Sturman, Eric J. ; Halls, Coralie ; Chen, Songyang ; Zeng, Jiamin ; Peng, Jiexin ; Kretzler, Crystal N. ; Evdokimov, Artem</creator><creatorcontrib>Duff, Stephen M.G. ; Rydel, Timothy J. ; McClerren, Amanda L. ; Zhang, Wenlan ; Li, Jimmy Y. ; Sturman, Eric J. ; Halls, Coralie ; Chen, Songyang ; Zeng, Jiamin ; Peng, Jiexin ; Kretzler, Crystal N. ; Evdokimov, Artem ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>► Barley alanine aminotransferase was purified and kinetically characterized. ► It can synthesize aspartate with 10% efficiency compared to alanine. ► We have solved the structure of barley AlaAT at 2.7Å resolution. ► This is the first example of a plant AlaAT structure.
In this paper we describe the expression, purification, kinetics and biophysical characterization of alanine aminotransferase (AlaAT) from the barley plant (Hordeum vulgare). This dimeric PLP-dependent enzyme is a pivotal element of several key metabolic pathways from nitrogen assimilation to carbon metabolism, and its introduction into transgenic plants results in increased yield. The enzyme exhibits a bi-bi ping-pong reaction mechanism with a Km for alanine, 2-oxoglutarate, glutamate and pyruvate of 3.8, 0.3, 0.8 and 0.2mM, respectively. Barley AlaAT catalyzes the forward (alanine-forming) reaction with a kcat of 25.6s−1, the reverse (glutamate-forming) reaction with kcat of 12.1s−1 and an equilibrium constant of ∼0.5. The enzyme is also able to utilize aspartate and oxaloacetate with ∼10% efficiency as compared to the native substrates, which makes it much more specific than related bacterial/archaeal enzymes (that also have lower Km values). We have crystallized barley AlaAT in complex with PLP and l-cycloserine and solved the structure of this complex at 2.7Å resolution. This is the first example of a plant AlaAT structure, and it reveals a canonical aminotransferase fold similar to structures of the Thermotoga maritima, Pyrococcus furiosus, and human enzymes. This structure bridges our structural understanding of AlaAT mechanism between three kingdoms of life and allows us to shed some light on the specifics of the catalysis performed by these proteins.</description><identifier>ISSN: 0003-9861</identifier><identifier>EISSN: 1096-0384</identifier><identifier>DOI: 10.1016/j.abb.2012.06.006</identifier><identifier>PMID: 22750542</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alanine ; Alanine - metabolism ; Alanine aminotransferase ; alanine transaminase ; Alanine Transaminase - chemistry ; Alanine Transaminase - isolation & purification ; Alanine Transaminase - metabolism ; Amino Acid Sequence ; aspartic acid ; Aspartic Acid - metabolism ; barley ; biochemical pathways ; carbon ; catalytic activity ; Crystal structure ; Crystallography, X-Ray ; Enzyme kinetics ; enzymology ; glutamic acid ; Hordeum - chemistry ; Hordeum - enzymology ; Hordeum - metabolism ; Hordeum vulgare ; Humans ; metabolism ; Models, Molecular ; Molecular Sequence Data ; nitrogen ; Nitrogen metabolism ; Protein Conformation ; Protein Isoforms - chemistry ; Protein Isoforms - isolation & purification ; Protein Isoforms - metabolism ; proteins ; Pyrococcus furiosus ; pyruvic acid ; Sequence Alignment ; Substrate Specificity ; Thermotoga maritima ; transgenic plants</subject><ispartof>Arch. Biochem. Biophys, 2012-12, Vol.528 (1), p.90-101</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-5279bebc1f445e8d3d4a477e0729178c9572104f62b5326820e77f2c3c320aa23</citedby><cites>FETCH-LOGICAL-c470t-5279bebc1f445e8d3d4a477e0729178c9572104f62b5326820e77f2c3c320aa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003986112002512$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22750542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1074268$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Duff, Stephen M.G.</creatorcontrib><creatorcontrib>Rydel, Timothy J.</creatorcontrib><creatorcontrib>McClerren, Amanda L.</creatorcontrib><creatorcontrib>Zhang, Wenlan</creatorcontrib><creatorcontrib>Li, Jimmy Y.</creatorcontrib><creatorcontrib>Sturman, Eric J.</creatorcontrib><creatorcontrib>Halls, Coralie</creatorcontrib><creatorcontrib>Chen, Songyang</creatorcontrib><creatorcontrib>Zeng, Jiamin</creatorcontrib><creatorcontrib>Peng, Jiexin</creatorcontrib><creatorcontrib>Kretzler, Crystal N.</creatorcontrib><creatorcontrib>Evdokimov, Artem</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure</title><title>Arch. Biochem. Biophys</title><addtitle>Arch Biochem Biophys</addtitle><description>► Barley alanine aminotransferase was purified and kinetically characterized. ► It can synthesize aspartate with 10% efficiency compared to alanine. ► We have solved the structure of barley AlaAT at 2.7Å resolution. ► This is the first example of a plant AlaAT structure.
In this paper we describe the expression, purification, kinetics and biophysical characterization of alanine aminotransferase (AlaAT) from the barley plant (Hordeum vulgare). This dimeric PLP-dependent enzyme is a pivotal element of several key metabolic pathways from nitrogen assimilation to carbon metabolism, and its introduction into transgenic plants results in increased yield. The enzyme exhibits a bi-bi ping-pong reaction mechanism with a Km for alanine, 2-oxoglutarate, glutamate and pyruvate of 3.8, 0.3, 0.8 and 0.2mM, respectively. Barley AlaAT catalyzes the forward (alanine-forming) reaction with a kcat of 25.6s−1, the reverse (glutamate-forming) reaction with kcat of 12.1s−1 and an equilibrium constant of ∼0.5. The enzyme is also able to utilize aspartate and oxaloacetate with ∼10% efficiency as compared to the native substrates, which makes it much more specific than related bacterial/archaeal enzymes (that also have lower Km values). We have crystallized barley AlaAT in complex with PLP and l-cycloserine and solved the structure of this complex at 2.7Å resolution. This is the first example of a plant AlaAT structure, and it reveals a canonical aminotransferase fold similar to structures of the Thermotoga maritima, Pyrococcus furiosus, and human enzymes. This structure bridges our structural understanding of AlaAT mechanism between three kingdoms of life and allows us to shed some light on the specifics of the catalysis performed by these proteins.</description><subject>Alanine</subject><subject>Alanine - metabolism</subject><subject>Alanine aminotransferase</subject><subject>alanine transaminase</subject><subject>Alanine Transaminase - chemistry</subject><subject>Alanine Transaminase - isolation & purification</subject><subject>Alanine Transaminase - metabolism</subject><subject>Amino Acid Sequence</subject><subject>aspartic acid</subject><subject>Aspartic Acid - metabolism</subject><subject>barley</subject><subject>biochemical pathways</subject><subject>carbon</subject><subject>catalytic activity</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Enzyme kinetics</subject><subject>enzymology</subject><subject>glutamic acid</subject><subject>Hordeum - chemistry</subject><subject>Hordeum - enzymology</subject><subject>Hordeum - metabolism</subject><subject>Hordeum vulgare</subject><subject>Humans</subject><subject>metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>nitrogen</subject><subject>Nitrogen metabolism</subject><subject>Protein Conformation</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - isolation & purification</subject><subject>Protein Isoforms - metabolism</subject><subject>proteins</subject><subject>Pyrococcus furiosus</subject><subject>pyruvic acid</subject><subject>Sequence Alignment</subject><subject>Substrate Specificity</subject><subject>Thermotoga maritima</subject><subject>transgenic plants</subject><issn>0003-9861</issn><issn>1096-0384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EokvhAbiAxalIJIwdJ07U06oqLFIlDmzPluNMdr1K4mI7Ky0vwGvjbQpHTpZG3__JMz8hbxnkDFj1-ZDrts05MJ5DlQNUz8iKQVNlUNTiOVkBQJE1dcUuyKsQDgCMiYq_JBecyxJKwVfk93aP9Hb6dRrd4HYn6nqqBz3ZCake7eSi11Po0euA9Go96PX2I7XB9c6PgfbejXTjfIfzSI_zsNM-xaaOurhHT53fJVMYw6fHYZrRzfHRQY0_hagHGqKfTZw9viYvej0EfPP0XpL7L7fbm0129_3rt5v1XWaEhJiVXDYttob1QpRYd0UntJASQfKGydo0peQMRF_xtix4VXNAKXtuClNw0JoXl-TD4nUhWhWMjWj2xk0TmqgYSJFCCbpaoAfvfs4YohptMDikw6Cbg2KM84pLaFhC2YIa70Lw2KsHb0ftT0mmziWpg0olqXNJCiqVSkqZd0_6uR2x-5f420oC3i9Ar53SO2-Duv-RDCUAZ2VZQCKuFwLTrY4W_XkVnAx21p836Zz9zwf-AJDEqsM</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Duff, Stephen M.G.</creator><creator>Rydel, Timothy J.</creator><creator>McClerren, Amanda L.</creator><creator>Zhang, Wenlan</creator><creator>Li, Jimmy Y.</creator><creator>Sturman, Eric J.</creator><creator>Halls, Coralie</creator><creator>Chen, Songyang</creator><creator>Zeng, Jiamin</creator><creator>Peng, Jiexin</creator><creator>Kretzler, Crystal N.</creator><creator>Evdokimov, Artem</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20121201</creationdate><title>The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure</title><author>Duff, Stephen M.G. ; Rydel, Timothy J. ; McClerren, Amanda L. ; Zhang, Wenlan ; Li, Jimmy Y. ; Sturman, Eric J. ; Halls, Coralie ; Chen, Songyang ; Zeng, Jiamin ; Peng, Jiexin ; Kretzler, Crystal N. ; Evdokimov, Artem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-5279bebc1f445e8d3d4a477e0729178c9572104f62b5326820e77f2c3c320aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alanine</topic><topic>Alanine - metabolism</topic><topic>Alanine aminotransferase</topic><topic>alanine transaminase</topic><topic>Alanine Transaminase - chemistry</topic><topic>Alanine Transaminase - isolation & purification</topic><topic>Alanine Transaminase - metabolism</topic><topic>Amino Acid Sequence</topic><topic>aspartic acid</topic><topic>Aspartic Acid - metabolism</topic><topic>barley</topic><topic>biochemical pathways</topic><topic>carbon</topic><topic>catalytic activity</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Enzyme kinetics</topic><topic>enzymology</topic><topic>glutamic acid</topic><topic>Hordeum - chemistry</topic><topic>Hordeum - enzymology</topic><topic>Hordeum - metabolism</topic><topic>Hordeum vulgare</topic><topic>Humans</topic><topic>metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>nitrogen</topic><topic>Nitrogen metabolism</topic><topic>Protein Conformation</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - isolation & purification</topic><topic>Protein Isoforms - metabolism</topic><topic>proteins</topic><topic>Pyrococcus furiosus</topic><topic>pyruvic acid</topic><topic>Sequence Alignment</topic><topic>Substrate Specificity</topic><topic>Thermotoga maritima</topic><topic>transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duff, Stephen M.G.</creatorcontrib><creatorcontrib>Rydel, Timothy J.</creatorcontrib><creatorcontrib>McClerren, Amanda L.</creatorcontrib><creatorcontrib>Zhang, Wenlan</creatorcontrib><creatorcontrib>Li, Jimmy Y.</creatorcontrib><creatorcontrib>Sturman, Eric J.</creatorcontrib><creatorcontrib>Halls, Coralie</creatorcontrib><creatorcontrib>Chen, Songyang</creatorcontrib><creatorcontrib>Zeng, Jiamin</creatorcontrib><creatorcontrib>Peng, Jiexin</creatorcontrib><creatorcontrib>Kretzler, Crystal N.</creatorcontrib><creatorcontrib>Evdokimov, Artem</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Arch. Biochem. Biophys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duff, Stephen M.G.</au><au>Rydel, Timothy J.</au><au>McClerren, Amanda L.</au><au>Zhang, Wenlan</au><au>Li, Jimmy Y.</au><au>Sturman, Eric J.</au><au>Halls, Coralie</au><au>Chen, Songyang</au><au>Zeng, Jiamin</au><au>Peng, Jiexin</au><au>Kretzler, Crystal N.</au><au>Evdokimov, Artem</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure</atitle><jtitle>Arch. Biochem. Biophys</jtitle><addtitle>Arch Biochem Biophys</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>528</volume><issue>1</issue><spage>90</spage><epage>101</epage><pages>90-101</pages><issn>0003-9861</issn><eissn>1096-0384</eissn><abstract>► Barley alanine aminotransferase was purified and kinetically characterized. ► It can synthesize aspartate with 10% efficiency compared to alanine. ► We have solved the structure of barley AlaAT at 2.7Å resolution. ► This is the first example of a plant AlaAT structure.
In this paper we describe the expression, purification, kinetics and biophysical characterization of alanine aminotransferase (AlaAT) from the barley plant (Hordeum vulgare). This dimeric PLP-dependent enzyme is a pivotal element of several key metabolic pathways from nitrogen assimilation to carbon metabolism, and its introduction into transgenic plants results in increased yield. The enzyme exhibits a bi-bi ping-pong reaction mechanism with a Km for alanine, 2-oxoglutarate, glutamate and pyruvate of 3.8, 0.3, 0.8 and 0.2mM, respectively. Barley AlaAT catalyzes the forward (alanine-forming) reaction with a kcat of 25.6s−1, the reverse (glutamate-forming) reaction with kcat of 12.1s−1 and an equilibrium constant of ∼0.5. The enzyme is also able to utilize aspartate and oxaloacetate with ∼10% efficiency as compared to the native substrates, which makes it much more specific than related bacterial/archaeal enzymes (that also have lower Km values). We have crystallized barley AlaAT in complex with PLP and l-cycloserine and solved the structure of this complex at 2.7Å resolution. This is the first example of a plant AlaAT structure, and it reveals a canonical aminotransferase fold similar to structures of the Thermotoga maritima, Pyrococcus furiosus, and human enzymes. This structure bridges our structural understanding of AlaAT mechanism between three kingdoms of life and allows us to shed some light on the specifics of the catalysis performed by these proteins.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22750542</pmid><doi>10.1016/j.abb.2012.06.006</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9861 |
ispartof | Arch. Biochem. Biophys, 2012-12, Vol.528 (1), p.90-101 |
issn | 0003-9861 1096-0384 |
language | eng |
recordid | cdi_proquest_miscellaneous_1122627091 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Alanine Alanine - metabolism Alanine aminotransferase alanine transaminase Alanine Transaminase - chemistry Alanine Transaminase - isolation & purification Alanine Transaminase - metabolism Amino Acid Sequence aspartic acid Aspartic Acid - metabolism barley biochemical pathways carbon catalytic activity Crystal structure Crystallography, X-Ray Enzyme kinetics enzymology glutamic acid Hordeum - chemistry Hordeum - enzymology Hordeum - metabolism Hordeum vulgare Humans metabolism Models, Molecular Molecular Sequence Data nitrogen Nitrogen metabolism Protein Conformation Protein Isoforms - chemistry Protein Isoforms - isolation & purification Protein Isoforms - metabolism proteins Pyrococcus furiosus pyruvic acid Sequence Alignment Substrate Specificity Thermotoga maritima transgenic plants |
title | The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Enzymology%20of%20alanine%20aminotransferase%20(AlaAT)%20isoforms%20from%20Hordeum%20vulgare%20and%20other%20organisms,%20and%20the%20HvAlaAT%20crystal%20structure&rft.jtitle=Arch.%20Biochem.%20Biophys&rft.au=Duff,%20Stephen%20M.G.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2012-12-01&rft.volume=528&rft.issue=1&rft.spage=90&rft.epage=101&rft.pages=90-101&rft.issn=0003-9861&rft.eissn=1096-0384&rft_id=info:doi/10.1016/j.abb.2012.06.006&rft_dat=%3Cproquest_osti_%3E1122627091%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1122627091&rft_id=info:pmid/22750542&rft_els_id=S0003986112002512&rfr_iscdi=true |