The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure

► Barley alanine aminotransferase was purified and kinetically characterized. ► It can synthesize aspartate with 10% efficiency compared to alanine. ► We have solved the structure of barley AlaAT at 2.7Å resolution. ► This is the first example of a plant AlaAT structure. In this paper we describe th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arch. Biochem. Biophys 2012-12, Vol.528 (1), p.90-101
Hauptverfasser: Duff, Stephen M.G., Rydel, Timothy J., McClerren, Amanda L., Zhang, Wenlan, Li, Jimmy Y., Sturman, Eric J., Halls, Coralie, Chen, Songyang, Zeng, Jiamin, Peng, Jiexin, Kretzler, Crystal N., Evdokimov, Artem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 1
container_start_page 90
container_title Arch. Biochem. Biophys
container_volume 528
creator Duff, Stephen M.G.
Rydel, Timothy J.
McClerren, Amanda L.
Zhang, Wenlan
Li, Jimmy Y.
Sturman, Eric J.
Halls, Coralie
Chen, Songyang
Zeng, Jiamin
Peng, Jiexin
Kretzler, Crystal N.
Evdokimov, Artem
description ► Barley alanine aminotransferase was purified and kinetically characterized. ► It can synthesize aspartate with 10% efficiency compared to alanine. ► We have solved the structure of barley AlaAT at 2.7Å resolution. ► This is the first example of a plant AlaAT structure. In this paper we describe the expression, purification, kinetics and biophysical characterization of alanine aminotransferase (AlaAT) from the barley plant (Hordeum vulgare). This dimeric PLP-dependent enzyme is a pivotal element of several key metabolic pathways from nitrogen assimilation to carbon metabolism, and its introduction into transgenic plants results in increased yield. The enzyme exhibits a bi-bi ping-pong reaction mechanism with a Km for alanine, 2-oxoglutarate, glutamate and pyruvate of 3.8, 0.3, 0.8 and 0.2mM, respectively. Barley AlaAT catalyzes the forward (alanine-forming) reaction with a kcat of 25.6s−1, the reverse (glutamate-forming) reaction with kcat of 12.1s−1 and an equilibrium constant of ∼0.5. The enzyme is also able to utilize aspartate and oxaloacetate with ∼10% efficiency as compared to the native substrates, which makes it much more specific than related bacterial/archaeal enzymes (that also have lower Km values). We have crystallized barley AlaAT in complex with PLP and l-cycloserine and solved the structure of this complex at 2.7Å resolution. This is the first example of a plant AlaAT structure, and it reveals a canonical aminotransferase fold similar to structures of the Thermotoga maritima, Pyrococcus furiosus, and human enzymes. This structure bridges our structural understanding of AlaAT mechanism between three kingdoms of life and allows us to shed some light on the specifics of the catalysis performed by these proteins.
doi_str_mv 10.1016/j.abb.2012.06.006
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1122627091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003986112002512</els_id><sourcerecordid>1122627091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-5279bebc1f445e8d3d4a477e0729178c9572104f62b5326820e77f2c3c320aa23</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EokvhAbiAxalIJIwdJ07U06oqLFIlDmzPluNMdr1K4mI7Ky0vwGvjbQpHTpZG3__JMz8hbxnkDFj1-ZDrts05MJ5DlQNUz8iKQVNlUNTiOVkBQJE1dcUuyKsQDgCMiYq_JBecyxJKwVfk93aP9Hb6dRrd4HYn6nqqBz3ZCake7eSi11Po0euA9Go96PX2I7XB9c6PgfbejXTjfIfzSI_zsNM-xaaOurhHT53fJVMYw6fHYZrRzfHRQY0_hagHGqKfTZw9viYvej0EfPP0XpL7L7fbm0129_3rt5v1XWaEhJiVXDYttob1QpRYd0UntJASQfKGydo0peQMRF_xtix4VXNAKXtuClNw0JoXl-TD4nUhWhWMjWj2xk0TmqgYSJFCCbpaoAfvfs4YohptMDikw6Cbg2KM84pLaFhC2YIa70Lw2KsHb0ftT0mmziWpg0olqXNJCiqVSkqZd0_6uR2x-5f420oC3i9Ar53SO2-Duv-RDCUAZ2VZQCKuFwLTrY4W_XkVnAx21p836Zz9zwf-AJDEqsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1122627091</pqid></control><display><type>article</type><title>The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Duff, Stephen M.G. ; Rydel, Timothy J. ; McClerren, Amanda L. ; Zhang, Wenlan ; Li, Jimmy Y. ; Sturman, Eric J. ; Halls, Coralie ; Chen, Songyang ; Zeng, Jiamin ; Peng, Jiexin ; Kretzler, Crystal N. ; Evdokimov, Artem</creator><creatorcontrib>Duff, Stephen M.G. ; Rydel, Timothy J. ; McClerren, Amanda L. ; Zhang, Wenlan ; Li, Jimmy Y. ; Sturman, Eric J. ; Halls, Coralie ; Chen, Songyang ; Zeng, Jiamin ; Peng, Jiexin ; Kretzler, Crystal N. ; Evdokimov, Artem ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>► Barley alanine aminotransferase was purified and kinetically characterized. ► It can synthesize aspartate with 10% efficiency compared to alanine. ► We have solved the structure of barley AlaAT at 2.7Å resolution. ► This is the first example of a plant AlaAT structure. In this paper we describe the expression, purification, kinetics and biophysical characterization of alanine aminotransferase (AlaAT) from the barley plant (Hordeum vulgare). This dimeric PLP-dependent enzyme is a pivotal element of several key metabolic pathways from nitrogen assimilation to carbon metabolism, and its introduction into transgenic plants results in increased yield. The enzyme exhibits a bi-bi ping-pong reaction mechanism with a Km for alanine, 2-oxoglutarate, glutamate and pyruvate of 3.8, 0.3, 0.8 and 0.2mM, respectively. Barley AlaAT catalyzes the forward (alanine-forming) reaction with a kcat of 25.6s−1, the reverse (glutamate-forming) reaction with kcat of 12.1s−1 and an equilibrium constant of ∼0.5. The enzyme is also able to utilize aspartate and oxaloacetate with ∼10% efficiency as compared to the native substrates, which makes it much more specific than related bacterial/archaeal enzymes (that also have lower Km values). We have crystallized barley AlaAT in complex with PLP and l-cycloserine and solved the structure of this complex at 2.7Å resolution. This is the first example of a plant AlaAT structure, and it reveals a canonical aminotransferase fold similar to structures of the Thermotoga maritima, Pyrococcus furiosus, and human enzymes. This structure bridges our structural understanding of AlaAT mechanism between three kingdoms of life and allows us to shed some light on the specifics of the catalysis performed by these proteins.</description><identifier>ISSN: 0003-9861</identifier><identifier>EISSN: 1096-0384</identifier><identifier>DOI: 10.1016/j.abb.2012.06.006</identifier><identifier>PMID: 22750542</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alanine ; Alanine - metabolism ; Alanine aminotransferase ; alanine transaminase ; Alanine Transaminase - chemistry ; Alanine Transaminase - isolation &amp; purification ; Alanine Transaminase - metabolism ; Amino Acid Sequence ; aspartic acid ; Aspartic Acid - metabolism ; barley ; biochemical pathways ; carbon ; catalytic activity ; Crystal structure ; Crystallography, X-Ray ; Enzyme kinetics ; enzymology ; glutamic acid ; Hordeum - chemistry ; Hordeum - enzymology ; Hordeum - metabolism ; Hordeum vulgare ; Humans ; metabolism ; Models, Molecular ; Molecular Sequence Data ; nitrogen ; Nitrogen metabolism ; Protein Conformation ; Protein Isoforms - chemistry ; Protein Isoforms - isolation &amp; purification ; Protein Isoforms - metabolism ; proteins ; Pyrococcus furiosus ; pyruvic acid ; Sequence Alignment ; Substrate Specificity ; Thermotoga maritima ; transgenic plants</subject><ispartof>Arch. Biochem. Biophys, 2012-12, Vol.528 (1), p.90-101</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-5279bebc1f445e8d3d4a477e0729178c9572104f62b5326820e77f2c3c320aa23</citedby><cites>FETCH-LOGICAL-c470t-5279bebc1f445e8d3d4a477e0729178c9572104f62b5326820e77f2c3c320aa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003986112002512$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22750542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1074268$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Duff, Stephen M.G.</creatorcontrib><creatorcontrib>Rydel, Timothy J.</creatorcontrib><creatorcontrib>McClerren, Amanda L.</creatorcontrib><creatorcontrib>Zhang, Wenlan</creatorcontrib><creatorcontrib>Li, Jimmy Y.</creatorcontrib><creatorcontrib>Sturman, Eric J.</creatorcontrib><creatorcontrib>Halls, Coralie</creatorcontrib><creatorcontrib>Chen, Songyang</creatorcontrib><creatorcontrib>Zeng, Jiamin</creatorcontrib><creatorcontrib>Peng, Jiexin</creatorcontrib><creatorcontrib>Kretzler, Crystal N.</creatorcontrib><creatorcontrib>Evdokimov, Artem</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure</title><title>Arch. Biochem. Biophys</title><addtitle>Arch Biochem Biophys</addtitle><description>► Barley alanine aminotransferase was purified and kinetically characterized. ► It can synthesize aspartate with 10% efficiency compared to alanine. ► We have solved the structure of barley AlaAT at 2.7Å resolution. ► This is the first example of a plant AlaAT structure. In this paper we describe the expression, purification, kinetics and biophysical characterization of alanine aminotransferase (AlaAT) from the barley plant (Hordeum vulgare). This dimeric PLP-dependent enzyme is a pivotal element of several key metabolic pathways from nitrogen assimilation to carbon metabolism, and its introduction into transgenic plants results in increased yield. The enzyme exhibits a bi-bi ping-pong reaction mechanism with a Km for alanine, 2-oxoglutarate, glutamate and pyruvate of 3.8, 0.3, 0.8 and 0.2mM, respectively. Barley AlaAT catalyzes the forward (alanine-forming) reaction with a kcat of 25.6s−1, the reverse (glutamate-forming) reaction with kcat of 12.1s−1 and an equilibrium constant of ∼0.5. The enzyme is also able to utilize aspartate and oxaloacetate with ∼10% efficiency as compared to the native substrates, which makes it much more specific than related bacterial/archaeal enzymes (that also have lower Km values). We have crystallized barley AlaAT in complex with PLP and l-cycloserine and solved the structure of this complex at 2.7Å resolution. This is the first example of a plant AlaAT structure, and it reveals a canonical aminotransferase fold similar to structures of the Thermotoga maritima, Pyrococcus furiosus, and human enzymes. This structure bridges our structural understanding of AlaAT mechanism between three kingdoms of life and allows us to shed some light on the specifics of the catalysis performed by these proteins.</description><subject>Alanine</subject><subject>Alanine - metabolism</subject><subject>Alanine aminotransferase</subject><subject>alanine transaminase</subject><subject>Alanine Transaminase - chemistry</subject><subject>Alanine Transaminase - isolation &amp; purification</subject><subject>Alanine Transaminase - metabolism</subject><subject>Amino Acid Sequence</subject><subject>aspartic acid</subject><subject>Aspartic Acid - metabolism</subject><subject>barley</subject><subject>biochemical pathways</subject><subject>carbon</subject><subject>catalytic activity</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Enzyme kinetics</subject><subject>enzymology</subject><subject>glutamic acid</subject><subject>Hordeum - chemistry</subject><subject>Hordeum - enzymology</subject><subject>Hordeum - metabolism</subject><subject>Hordeum vulgare</subject><subject>Humans</subject><subject>metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>nitrogen</subject><subject>Nitrogen metabolism</subject><subject>Protein Conformation</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - isolation &amp; purification</subject><subject>Protein Isoforms - metabolism</subject><subject>proteins</subject><subject>Pyrococcus furiosus</subject><subject>pyruvic acid</subject><subject>Sequence Alignment</subject><subject>Substrate Specificity</subject><subject>Thermotoga maritima</subject><subject>transgenic plants</subject><issn>0003-9861</issn><issn>1096-0384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EokvhAbiAxalIJIwdJ07U06oqLFIlDmzPluNMdr1K4mI7Ky0vwGvjbQpHTpZG3__JMz8hbxnkDFj1-ZDrts05MJ5DlQNUz8iKQVNlUNTiOVkBQJE1dcUuyKsQDgCMiYq_JBecyxJKwVfk93aP9Hb6dRrd4HYn6nqqBz3ZCake7eSi11Po0euA9Go96PX2I7XB9c6PgfbejXTjfIfzSI_zsNM-xaaOurhHT53fJVMYw6fHYZrRzfHRQY0_hagHGqKfTZw9viYvej0EfPP0XpL7L7fbm0129_3rt5v1XWaEhJiVXDYttob1QpRYd0UntJASQfKGydo0peQMRF_xtix4VXNAKXtuClNw0JoXl-TD4nUhWhWMjWj2xk0TmqgYSJFCCbpaoAfvfs4YohptMDikw6Cbg2KM84pLaFhC2YIa70Lw2KsHb0ftT0mmziWpg0olqXNJCiqVSkqZd0_6uR2x-5f420oC3i9Ar53SO2-Duv-RDCUAZ2VZQCKuFwLTrY4W_XkVnAx21p836Zz9zwf-AJDEqsM</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Duff, Stephen M.G.</creator><creator>Rydel, Timothy J.</creator><creator>McClerren, Amanda L.</creator><creator>Zhang, Wenlan</creator><creator>Li, Jimmy Y.</creator><creator>Sturman, Eric J.</creator><creator>Halls, Coralie</creator><creator>Chen, Songyang</creator><creator>Zeng, Jiamin</creator><creator>Peng, Jiexin</creator><creator>Kretzler, Crystal N.</creator><creator>Evdokimov, Artem</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20121201</creationdate><title>The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure</title><author>Duff, Stephen M.G. ; Rydel, Timothy J. ; McClerren, Amanda L. ; Zhang, Wenlan ; Li, Jimmy Y. ; Sturman, Eric J. ; Halls, Coralie ; Chen, Songyang ; Zeng, Jiamin ; Peng, Jiexin ; Kretzler, Crystal N. ; Evdokimov, Artem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-5279bebc1f445e8d3d4a477e0729178c9572104f62b5326820e77f2c3c320aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alanine</topic><topic>Alanine - metabolism</topic><topic>Alanine aminotransferase</topic><topic>alanine transaminase</topic><topic>Alanine Transaminase - chemistry</topic><topic>Alanine Transaminase - isolation &amp; purification</topic><topic>Alanine Transaminase - metabolism</topic><topic>Amino Acid Sequence</topic><topic>aspartic acid</topic><topic>Aspartic Acid - metabolism</topic><topic>barley</topic><topic>biochemical pathways</topic><topic>carbon</topic><topic>catalytic activity</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Enzyme kinetics</topic><topic>enzymology</topic><topic>glutamic acid</topic><topic>Hordeum - chemistry</topic><topic>Hordeum - enzymology</topic><topic>Hordeum - metabolism</topic><topic>Hordeum vulgare</topic><topic>Humans</topic><topic>metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>nitrogen</topic><topic>Nitrogen metabolism</topic><topic>Protein Conformation</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - isolation &amp; purification</topic><topic>Protein Isoforms - metabolism</topic><topic>proteins</topic><topic>Pyrococcus furiosus</topic><topic>pyruvic acid</topic><topic>Sequence Alignment</topic><topic>Substrate Specificity</topic><topic>Thermotoga maritima</topic><topic>transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duff, Stephen M.G.</creatorcontrib><creatorcontrib>Rydel, Timothy J.</creatorcontrib><creatorcontrib>McClerren, Amanda L.</creatorcontrib><creatorcontrib>Zhang, Wenlan</creatorcontrib><creatorcontrib>Li, Jimmy Y.</creatorcontrib><creatorcontrib>Sturman, Eric J.</creatorcontrib><creatorcontrib>Halls, Coralie</creatorcontrib><creatorcontrib>Chen, Songyang</creatorcontrib><creatorcontrib>Zeng, Jiamin</creatorcontrib><creatorcontrib>Peng, Jiexin</creatorcontrib><creatorcontrib>Kretzler, Crystal N.</creatorcontrib><creatorcontrib>Evdokimov, Artem</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Arch. Biochem. Biophys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duff, Stephen M.G.</au><au>Rydel, Timothy J.</au><au>McClerren, Amanda L.</au><au>Zhang, Wenlan</au><au>Li, Jimmy Y.</au><au>Sturman, Eric J.</au><au>Halls, Coralie</au><au>Chen, Songyang</au><au>Zeng, Jiamin</au><au>Peng, Jiexin</au><au>Kretzler, Crystal N.</au><au>Evdokimov, Artem</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure</atitle><jtitle>Arch. Biochem. Biophys</jtitle><addtitle>Arch Biochem Biophys</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>528</volume><issue>1</issue><spage>90</spage><epage>101</epage><pages>90-101</pages><issn>0003-9861</issn><eissn>1096-0384</eissn><abstract>► Barley alanine aminotransferase was purified and kinetically characterized. ► It can synthesize aspartate with 10% efficiency compared to alanine. ► We have solved the structure of barley AlaAT at 2.7Å resolution. ► This is the first example of a plant AlaAT structure. In this paper we describe the expression, purification, kinetics and biophysical characterization of alanine aminotransferase (AlaAT) from the barley plant (Hordeum vulgare). This dimeric PLP-dependent enzyme is a pivotal element of several key metabolic pathways from nitrogen assimilation to carbon metabolism, and its introduction into transgenic plants results in increased yield. The enzyme exhibits a bi-bi ping-pong reaction mechanism with a Km for alanine, 2-oxoglutarate, glutamate and pyruvate of 3.8, 0.3, 0.8 and 0.2mM, respectively. Barley AlaAT catalyzes the forward (alanine-forming) reaction with a kcat of 25.6s−1, the reverse (glutamate-forming) reaction with kcat of 12.1s−1 and an equilibrium constant of ∼0.5. The enzyme is also able to utilize aspartate and oxaloacetate with ∼10% efficiency as compared to the native substrates, which makes it much more specific than related bacterial/archaeal enzymes (that also have lower Km values). We have crystallized barley AlaAT in complex with PLP and l-cycloserine and solved the structure of this complex at 2.7Å resolution. This is the first example of a plant AlaAT structure, and it reveals a canonical aminotransferase fold similar to structures of the Thermotoga maritima, Pyrococcus furiosus, and human enzymes. This structure bridges our structural understanding of AlaAT mechanism between three kingdoms of life and allows us to shed some light on the specifics of the catalysis performed by these proteins.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22750542</pmid><doi>10.1016/j.abb.2012.06.006</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9861
ispartof Arch. Biochem. Biophys, 2012-12, Vol.528 (1), p.90-101
issn 0003-9861
1096-0384
language eng
recordid cdi_proquest_miscellaneous_1122627091
source MEDLINE; Elsevier ScienceDirect Journals
subjects Alanine
Alanine - metabolism
Alanine aminotransferase
alanine transaminase
Alanine Transaminase - chemistry
Alanine Transaminase - isolation & purification
Alanine Transaminase - metabolism
Amino Acid Sequence
aspartic acid
Aspartic Acid - metabolism
barley
biochemical pathways
carbon
catalytic activity
Crystal structure
Crystallography, X-Ray
Enzyme kinetics
enzymology
glutamic acid
Hordeum - chemistry
Hordeum - enzymology
Hordeum - metabolism
Hordeum vulgare
Humans
metabolism
Models, Molecular
Molecular Sequence Data
nitrogen
Nitrogen metabolism
Protein Conformation
Protein Isoforms - chemistry
Protein Isoforms - isolation & purification
Protein Isoforms - metabolism
proteins
Pyrococcus furiosus
pyruvic acid
Sequence Alignment
Substrate Specificity
Thermotoga maritima
transgenic plants
title The Enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Enzymology%20of%20alanine%20aminotransferase%20(AlaAT)%20isoforms%20from%20Hordeum%20vulgare%20and%20other%20organisms,%20and%20the%20HvAlaAT%20crystal%20structure&rft.jtitle=Arch.%20Biochem.%20Biophys&rft.au=Duff,%20Stephen%20M.G.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2012-12-01&rft.volume=528&rft.issue=1&rft.spage=90&rft.epage=101&rft.pages=90-101&rft.issn=0003-9861&rft.eissn=1096-0384&rft_id=info:doi/10.1016/j.abb.2012.06.006&rft_dat=%3Cproquest_osti_%3E1122627091%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1122627091&rft_id=info:pmid/22750542&rft_els_id=S0003986112002512&rfr_iscdi=true