Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans

Biochemical and structural analysis of the drug transporter P-glycoprotein in Caenorhabditis elegans at a resolution of 3.4 angstroms is used to generate a homology model of the human protein and supports a picture in which P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2012-10, Vol.490 (7421), p.566-569
Hauptverfasser: Jin, Mi Sun, Oldham, Michael L., Zhang, Qiuju, Chen, Jue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue 7421
container_start_page 566
container_title Nature
container_volume 490
creator Jin, Mi Sun
Oldham, Michael L.
Zhang, Qiuju
Chen, Jue
description Biochemical and structural analysis of the drug transporter P-glycoprotein in Caenorhabditis elegans at a resolution of 3.4 angstroms is used to generate a homology model of the human protein and supports a picture in which P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the cell membrane. Multidrug transporter structure The ABC (ATP-binding cassette) transporter P-glycoprotein confers multidrug resistance in cancer cells. In this manuscript, the authors biochemically and structurally characterize P-glycoprotein from Caenorhabditis elegans and use that information to generate a homology model for human P-glycoprotein. Their data suggest how P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the membrane. P-glycoprotein (P-gp) is an ATP-binding cassette transporter that confers multidrug resistance in cancer cells 1 , 2 . It also affects the absorption, distribution and clearance of cancer-unrelated drugs and xenobiotics. For these reasons, the structure and function of P-gp have been studied extensively for decades 3 . Here we present biochemical characterization of P-gp from Caenorhabditis elegans and its crystal structure at a resolution of 3.4 ångströms. We find that the apparent affinities of P-gp for anticancer drugs actinomycin D and paclitaxel are approximately 4,000 and 100 times higher, respectively, in the membrane bilayer than in detergent. This affinity enhancement highlights the importance of membrane partitioning when a drug accesses the transporter in the membrane 4 . Furthermore, the transporter in the crystal structure opens its drug pathway at the level of the membrane’s inner leaflet. In the helices flanking the opening to the membrane, we observe extended loops that may mediate drug binding, function as hinges to gate the pathway or both. We also find that the interface between the transmembrane and nucleotide-binding domains, which couples ATP hydrolysis to transport, contains a ball-and-socket joint and salt bridges similar to the ATP-binding cassette importers 5 , suggesting that ATP-binding cassette exporters and importers may use similar mechanisms to achieve alternating access for transport. Finally, a model of human P-gp derived from the structure of C. elegans P-gp not only is compatible with decades of biochemical analysis 6 , 7 , 8 , 9 , 10 , 11 , 12 , but also helps to explain perplexing functional data regarding
doi_str_mv 10.1038/nature11448
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1115531874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A306757675</galeid><sourcerecordid>A306757675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c769t-63a5c6db283f2c849c456287504c8db5f1041f7a7fc34d4ec0605fc164e553fe3</originalsourceid><addsrcrecordid>eNqF0t2L1DAQAPAiireePvku5URQtGfSJmn28VhOPThQ_HjwqWTTSTdHm-wlKbj__c2yq3ZlVUppaH-ZmXQmy55Sck5JJd86lcYAlDIm72UzympRMCHr-9mMkFIWRFbiJHsU4w0hhNOaPcxOygrXc1LOsu-LsIlJ9XlMYdTbQLk3eVpBPox9sm0YuzwF5eLahwQh_1R0_Ub7dfAJrMtN8EO-UOB8WKlla5ONOfTQ4YbH2QOj-ghP9s_T7Nu7y6-LD8X1x_dXi4vrQtdingpRKa5FuyxlZUot2VwzLkpZc8K0bJfcUMKoqVVtdMVaBpoIwo2mggHnlYHqNDvbxfUx2SZqm0CvtHcOdGooEZKLOaKXO4SF344QUzPYqKHvlQM_xoZSitGorBnS53_QGz8Gh0dAJWkpOJ-qTvXQWGc8_iW9DdpciIoJLLKc_1NVRNS8xhtVcUR14CCo3jswFl8f-LMjXq_tbTNN_Vc0jXR-BOHVwmD10dSvDjagSfAjdWqMsbn68vnw8P-z07ivd1YHH2MA06yDHVTYYAeb7ZQ3kylH_WzfonE5QPvL_hxrBC_2QEWteoMDrG387QTDEgVF92bnIn5yHYRJr4_kvQOwcQ0e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1181265574</pqid></control><display><type>article</type><title>Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Jin, Mi Sun ; Oldham, Michael L. ; Zhang, Qiuju ; Chen, Jue</creator><creatorcontrib>Jin, Mi Sun ; Oldham, Michael L. ; Zhang, Qiuju ; Chen, Jue ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Biochemical and structural analysis of the drug transporter P-glycoprotein in Caenorhabditis elegans at a resolution of 3.4 angstroms is used to generate a homology model of the human protein and supports a picture in which P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the cell membrane. Multidrug transporter structure The ABC (ATP-binding cassette) transporter P-glycoprotein confers multidrug resistance in cancer cells. In this manuscript, the authors biochemically and structurally characterize P-glycoprotein from Caenorhabditis elegans and use that information to generate a homology model for human P-glycoprotein. Their data suggest how P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the membrane. P-glycoprotein (P-gp) is an ATP-binding cassette transporter that confers multidrug resistance in cancer cells 1 , 2 . It also affects the absorption, distribution and clearance of cancer-unrelated drugs and xenobiotics. For these reasons, the structure and function of P-gp have been studied extensively for decades 3 . Here we present biochemical characterization of P-gp from Caenorhabditis elegans and its crystal structure at a resolution of 3.4 ångströms. We find that the apparent affinities of P-gp for anticancer drugs actinomycin D and paclitaxel are approximately 4,000 and 100 times higher, respectively, in the membrane bilayer than in detergent. This affinity enhancement highlights the importance of membrane partitioning when a drug accesses the transporter in the membrane 4 . Furthermore, the transporter in the crystal structure opens its drug pathway at the level of the membrane’s inner leaflet. In the helices flanking the opening to the membrane, we observe extended loops that may mediate drug binding, function as hinges to gate the pathway or both. We also find that the interface between the transmembrane and nucleotide-binding domains, which couples ATP hydrolysis to transport, contains a ball-and-socket joint and salt bridges similar to the ATP-binding cassette importers 5 , suggesting that ATP-binding cassette exporters and importers may use similar mechanisms to achieve alternating access for transport. Finally, a model of human P-gp derived from the structure of C. elegans P-gp not only is compatible with decades of biochemical analysis 6 , 7 , 8 , 9 , 10 , 11 , 12 , but also helps to explain perplexing functional data regarding the Phe335Ala mutant 13 , 14 . These results increase our understanding of the structure and function of this important molecule.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature11448</identifier><identifier>PMID: 23000902</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/535 ; 631/45/612/1231 ; 631/67/1059/2326 ; Adenosine triphosphatase ; Adenosine Triphosphate - metabolism ; Analysis ; Analytical, structural and metabolic biochemistry ; Animals ; ATP ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - chemistry ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism ; Binding Sites ; Biochemical analysis ; Biochemistry ; Biological and medical sciences ; Caenorhabditis elegans ; Caenorhabditis elegans - chemistry ; Chemical properties ; Crystal structure ; Crystalline structure ; Crystallography, X-Ray ; Crystals ; Dactinomycin - metabolism ; Drug resistance ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Genetic aspects ; Genetics ; Glycoproteins ; Humanities and Social Sciences ; Humans ; Hydrolysis ; letter ; Lipid Bilayers - metabolism ; Membranes ; Models, Biological ; Models, Molecular ; Molecular and cellular biology ; Molecular biophysics ; multidisciplinary ; Nematodes ; Paclitaxel - metabolism ; Properties ; Protein Structure, Tertiary ; Proteins ; Science ; Structural Homology, Protein ; Structure ; Structure in molecular biology ; Structure-Activity Relationship ; Testing ; Xenobiotics</subject><ispartof>Nature, 2012-10, Vol.490 (7421), p.566-569</ispartof><rights>Springer Nature Limited 2012</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 25, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c769t-63a5c6db283f2c849c456287504c8db5f1041f7a7fc34d4ec0605fc164e553fe3</citedby><cites>FETCH-LOGICAL-c769t-63a5c6db283f2c849c456287504c8db5f1041f7a7fc34d4ec0605fc164e553fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature11448$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature11448$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26460561$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23000902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1068569$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Mi Sun</creatorcontrib><creatorcontrib>Oldham, Michael L.</creatorcontrib><creatorcontrib>Zhang, Qiuju</creatorcontrib><creatorcontrib>Chen, Jue</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Biochemical and structural analysis of the drug transporter P-glycoprotein in Caenorhabditis elegans at a resolution of 3.4 angstroms is used to generate a homology model of the human protein and supports a picture in which P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the cell membrane. Multidrug transporter structure The ABC (ATP-binding cassette) transporter P-glycoprotein confers multidrug resistance in cancer cells. In this manuscript, the authors biochemically and structurally characterize P-glycoprotein from Caenorhabditis elegans and use that information to generate a homology model for human P-glycoprotein. Their data suggest how P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the membrane. P-glycoprotein (P-gp) is an ATP-binding cassette transporter that confers multidrug resistance in cancer cells 1 , 2 . It also affects the absorption, distribution and clearance of cancer-unrelated drugs and xenobiotics. For these reasons, the structure and function of P-gp have been studied extensively for decades 3 . Here we present biochemical characterization of P-gp from Caenorhabditis elegans and its crystal structure at a resolution of 3.4 ångströms. We find that the apparent affinities of P-gp for anticancer drugs actinomycin D and paclitaxel are approximately 4,000 and 100 times higher, respectively, in the membrane bilayer than in detergent. This affinity enhancement highlights the importance of membrane partitioning when a drug accesses the transporter in the membrane 4 . Furthermore, the transporter in the crystal structure opens its drug pathway at the level of the membrane’s inner leaflet. In the helices flanking the opening to the membrane, we observe extended loops that may mediate drug binding, function as hinges to gate the pathway or both. We also find that the interface between the transmembrane and nucleotide-binding domains, which couples ATP hydrolysis to transport, contains a ball-and-socket joint and salt bridges similar to the ATP-binding cassette importers 5 , suggesting that ATP-binding cassette exporters and importers may use similar mechanisms to achieve alternating access for transport. Finally, a model of human P-gp derived from the structure of C. elegans P-gp not only is compatible with decades of biochemical analysis 6 , 7 , 8 , 9 , 10 , 11 , 12 , but also helps to explain perplexing functional data regarding the Phe335Ala mutant 13 , 14 . These results increase our understanding of the structure and function of this important molecule.</description><subject>631/45/535</subject><subject>631/45/612/1231</subject><subject>631/67/1059/2326</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Analysis</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>ATP</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - chemistry</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</subject><subject>Binding Sites</subject><subject>Biochemical analysis</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - chemistry</subject><subject>Chemical properties</subject><subject>Crystal structure</subject><subject>Crystalline structure</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Dactinomycin - metabolism</subject><subject>Drug resistance</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Glycoproteins</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>letter</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>Molecular biophysics</subject><subject>multidisciplinary</subject><subject>Nematodes</subject><subject>Paclitaxel - metabolism</subject><subject>Properties</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Science</subject><subject>Structural Homology, Protein</subject><subject>Structure</subject><subject>Structure in molecular biology</subject><subject>Structure-Activity Relationship</subject><subject>Testing</subject><subject>Xenobiotics</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0t2L1DAQAPAiireePvku5URQtGfSJmn28VhOPThQ_HjwqWTTSTdHm-wlKbj__c2yq3ZlVUppaH-ZmXQmy55Sck5JJd86lcYAlDIm72UzympRMCHr-9mMkFIWRFbiJHsU4w0hhNOaPcxOygrXc1LOsu-LsIlJ9XlMYdTbQLk3eVpBPox9sm0YuzwF5eLahwQh_1R0_Ub7dfAJrMtN8EO-UOB8WKlla5ONOfTQ4YbH2QOj-ghP9s_T7Nu7y6-LD8X1x_dXi4vrQtdingpRKa5FuyxlZUot2VwzLkpZc8K0bJfcUMKoqVVtdMVaBpoIwo2mggHnlYHqNDvbxfUx2SZqm0CvtHcOdGooEZKLOaKXO4SF344QUzPYqKHvlQM_xoZSitGorBnS53_QGz8Gh0dAJWkpOJ-qTvXQWGc8_iW9DdpciIoJLLKc_1NVRNS8xhtVcUR14CCo3jswFl8f-LMjXq_tbTNN_Vc0jXR-BOHVwmD10dSvDjagSfAjdWqMsbn68vnw8P-z07ivd1YHH2MA06yDHVTYYAeb7ZQ3kylH_WzfonE5QPvL_hxrBC_2QEWteoMDrG387QTDEgVF92bnIn5yHYRJr4_kvQOwcQ0e</recordid><startdate>20121025</startdate><enddate>20121025</enddate><creator>Jin, Mi Sun</creator><creator>Oldham, Michael L.</creator><creator>Zhang, Qiuju</creator><creator>Chen, Jue</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20121025</creationdate><title>Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans</title><author>Jin, Mi Sun ; Oldham, Michael L. ; Zhang, Qiuju ; Chen, Jue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c769t-63a5c6db283f2c849c456287504c8db5f1041f7a7fc34d4ec0605fc164e553fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/45/535</topic><topic>631/45/612/1231</topic><topic>631/67/1059/2326</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Analysis</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>ATP</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - chemistry</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</topic><topic>Binding Sites</topic><topic>Biochemical analysis</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - chemistry</topic><topic>Chemical properties</topic><topic>Crystal structure</topic><topic>Crystalline structure</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Dactinomycin - metabolism</topic><topic>Drug resistance</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Glycoproteins</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>letter</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>Molecular biophysics</topic><topic>multidisciplinary</topic><topic>Nematodes</topic><topic>Paclitaxel - metabolism</topic><topic>Properties</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Science</topic><topic>Structural Homology, Protein</topic><topic>Structure</topic><topic>Structure in molecular biology</topic><topic>Structure-Activity Relationship</topic><topic>Testing</topic><topic>Xenobiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Mi Sun</creatorcontrib><creatorcontrib>Oldham, Michael L.</creatorcontrib><creatorcontrib>Zhang, Qiuju</creatorcontrib><creatorcontrib>Chen, Jue</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Mi Sun</au><au>Oldham, Michael L.</au><au>Zhang, Qiuju</au><au>Chen, Jue</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2012-10-25</date><risdate>2012</risdate><volume>490</volume><issue>7421</issue><spage>566</spage><epage>569</epage><pages>566-569</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Biochemical and structural analysis of the drug transporter P-glycoprotein in Caenorhabditis elegans at a resolution of 3.4 angstroms is used to generate a homology model of the human protein and supports a picture in which P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the cell membrane. Multidrug transporter structure The ABC (ATP-binding cassette) transporter P-glycoprotein confers multidrug resistance in cancer cells. In this manuscript, the authors biochemically and structurally characterize P-glycoprotein from Caenorhabditis elegans and use that information to generate a homology model for human P-glycoprotein. Their data suggest how P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the membrane. P-glycoprotein (P-gp) is an ATP-binding cassette transporter that confers multidrug resistance in cancer cells 1 , 2 . It also affects the absorption, distribution and clearance of cancer-unrelated drugs and xenobiotics. For these reasons, the structure and function of P-gp have been studied extensively for decades 3 . Here we present biochemical characterization of P-gp from Caenorhabditis elegans and its crystal structure at a resolution of 3.4 ångströms. We find that the apparent affinities of P-gp for anticancer drugs actinomycin D and paclitaxel are approximately 4,000 and 100 times higher, respectively, in the membrane bilayer than in detergent. This affinity enhancement highlights the importance of membrane partitioning when a drug accesses the transporter in the membrane 4 . Furthermore, the transporter in the crystal structure opens its drug pathway at the level of the membrane’s inner leaflet. In the helices flanking the opening to the membrane, we observe extended loops that may mediate drug binding, function as hinges to gate the pathway or both. We also find that the interface between the transmembrane and nucleotide-binding domains, which couples ATP hydrolysis to transport, contains a ball-and-socket joint and salt bridges similar to the ATP-binding cassette importers 5 , suggesting that ATP-binding cassette exporters and importers may use similar mechanisms to achieve alternating access for transport. Finally, a model of human P-gp derived from the structure of C. elegans P-gp not only is compatible with decades of biochemical analysis 6 , 7 , 8 , 9 , 10 , 11 , 12 , but also helps to explain perplexing functional data regarding the Phe335Ala mutant 13 , 14 . These results increase our understanding of the structure and function of this important molecule.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23000902</pmid><doi>10.1038/nature11448</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature, 2012-10, Vol.490 (7421), p.566-569
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_1115531874
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/45/535
631/45/612/1231
631/67/1059/2326
Adenosine triphosphatase
Adenosine Triphosphate - metabolism
Analysis
Analytical, structural and metabolic biochemistry
Animals
ATP
ATP Binding Cassette Transporter, Subfamily B, Member 1 - chemistry
ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism
Binding Sites
Biochemical analysis
Biochemistry
Biological and medical sciences
Caenorhabditis elegans
Caenorhabditis elegans - chemistry
Chemical properties
Crystal structure
Crystalline structure
Crystallography, X-Ray
Crystals
Dactinomycin - metabolism
Drug resistance
Enzymes
Fundamental and applied biological sciences. Psychology
Genetic aspects
Genetics
Glycoproteins
Humanities and Social Sciences
Humans
Hydrolysis
letter
Lipid Bilayers - metabolism
Membranes
Models, Biological
Models, Molecular
Molecular and cellular biology
Molecular biophysics
multidisciplinary
Nematodes
Paclitaxel - metabolism
Properties
Protein Structure, Tertiary
Proteins
Science
Structural Homology, Protein
Structure
Structure in molecular biology
Structure-Activity Relationship
Testing
Xenobiotics
title Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20the%20multidrug%20transporter%20P-glycoprotein%20from%20Caenorhabditis%20elegans&rft.jtitle=Nature&rft.au=Jin,%20Mi%20Sun&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2012-10-25&rft.volume=490&rft.issue=7421&rft.spage=566&rft.epage=569&rft.pages=566-569&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature11448&rft_dat=%3Cgale_osti_%3EA306757675%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1181265574&rft_id=info:pmid/23000902&rft_galeid=A306757675&rfr_iscdi=true