Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans
Biochemical and structural analysis of the drug transporter P-glycoprotein in Caenorhabditis elegans at a resolution of 3.4 angstroms is used to generate a homology model of the human protein and supports a picture in which P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molec...
Gespeichert in:
Veröffentlicht in: | Nature 2012-10, Vol.490 (7421), p.566-569 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 569 |
---|---|
container_issue | 7421 |
container_start_page | 566 |
container_title | Nature |
container_volume | 490 |
creator | Jin, Mi Sun Oldham, Michael L. Zhang, Qiuju Chen, Jue |
description | Biochemical and structural analysis of the drug transporter P-glycoprotein in
Caenorhabditis elegans
at a resolution of 3.4 angstroms is used to generate a homology model of the human protein and supports a picture in which P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the cell membrane.
Multidrug transporter structure
The ABC (ATP-binding cassette) transporter P-glycoprotein confers multidrug resistance in cancer cells. In this manuscript, the authors biochemically and structurally characterize P-glycoprotein from
Caenorhabditis elegans
and use that information to generate a homology model for human P-glycoprotein. Their data suggest how P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the membrane.
P-glycoprotein (P-gp) is an ATP-binding cassette transporter that confers multidrug resistance in cancer cells
1
,
2
. It also affects the absorption, distribution and clearance of cancer-unrelated drugs and xenobiotics. For these reasons, the structure and function of P-gp have been studied extensively for decades
3
. Here we present biochemical characterization of P-gp from
Caenorhabditis elegans
and its crystal structure at a resolution of 3.4 ångströms. We find that the apparent affinities of P-gp for anticancer drugs actinomycin D and paclitaxel are approximately 4,000 and 100 times higher, respectively, in the membrane bilayer than in detergent. This affinity enhancement highlights the importance of membrane partitioning when a drug accesses the transporter in the membrane
4
. Furthermore, the transporter in the crystal structure opens its drug pathway at the level of the membrane’s inner leaflet. In the helices flanking the opening to the membrane, we observe extended loops that may mediate drug binding, function as hinges to gate the pathway or both. We also find that the interface between the transmembrane and nucleotide-binding domains, which couples ATP hydrolysis to transport, contains a ball-and-socket joint and salt bridges similar to the ATP-binding cassette importers
5
, suggesting that ATP-binding cassette exporters and importers may use similar mechanisms to achieve alternating access for transport. Finally, a model of human P-gp derived from the structure of
C. elegans
P-gp not only is compatible with decades of biochemical analysis
6
,
7
,
8
,
9
,
10
,
11
,
12
, but also helps to explain perplexing functional data regarding |
doi_str_mv | 10.1038/nature11448 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1115531874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A306757675</galeid><sourcerecordid>A306757675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c769t-63a5c6db283f2c849c456287504c8db5f1041f7a7fc34d4ec0605fc164e553fe3</originalsourceid><addsrcrecordid>eNqF0t2L1DAQAPAiireePvku5URQtGfSJmn28VhOPThQ_HjwqWTTSTdHm-wlKbj__c2yq3ZlVUppaH-ZmXQmy55Sck5JJd86lcYAlDIm72UzympRMCHr-9mMkFIWRFbiJHsU4w0hhNOaPcxOygrXc1LOsu-LsIlJ9XlMYdTbQLk3eVpBPox9sm0YuzwF5eLahwQh_1R0_Ub7dfAJrMtN8EO-UOB8WKlla5ONOfTQ4YbH2QOj-ghP9s_T7Nu7y6-LD8X1x_dXi4vrQtdingpRKa5FuyxlZUot2VwzLkpZc8K0bJfcUMKoqVVtdMVaBpoIwo2mggHnlYHqNDvbxfUx2SZqm0CvtHcOdGooEZKLOaKXO4SF344QUzPYqKHvlQM_xoZSitGorBnS53_QGz8Gh0dAJWkpOJ-qTvXQWGc8_iW9DdpciIoJLLKc_1NVRNS8xhtVcUR14CCo3jswFl8f-LMjXq_tbTNN_Vc0jXR-BOHVwmD10dSvDjagSfAjdWqMsbn68vnw8P-z07ivd1YHH2MA06yDHVTYYAeb7ZQ3kylH_WzfonE5QPvL_hxrBC_2QEWteoMDrG387QTDEgVF92bnIn5yHYRJr4_kvQOwcQ0e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1181265574</pqid></control><display><type>article</type><title>Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Jin, Mi Sun ; Oldham, Michael L. ; Zhang, Qiuju ; Chen, Jue</creator><creatorcontrib>Jin, Mi Sun ; Oldham, Michael L. ; Zhang, Qiuju ; Chen, Jue ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Biochemical and structural analysis of the drug transporter P-glycoprotein in
Caenorhabditis elegans
at a resolution of 3.4 angstroms is used to generate a homology model of the human protein and supports a picture in which P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the cell membrane.
Multidrug transporter structure
The ABC (ATP-binding cassette) transporter P-glycoprotein confers multidrug resistance in cancer cells. In this manuscript, the authors biochemically and structurally characterize P-glycoprotein from
Caenorhabditis elegans
and use that information to generate a homology model for human P-glycoprotein. Their data suggest how P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the membrane.
P-glycoprotein (P-gp) is an ATP-binding cassette transporter that confers multidrug resistance in cancer cells
1
,
2
. It also affects the absorption, distribution and clearance of cancer-unrelated drugs and xenobiotics. For these reasons, the structure and function of P-gp have been studied extensively for decades
3
. Here we present biochemical characterization of P-gp from
Caenorhabditis elegans
and its crystal structure at a resolution of 3.4 ångströms. We find that the apparent affinities of P-gp for anticancer drugs actinomycin D and paclitaxel are approximately 4,000 and 100 times higher, respectively, in the membrane bilayer than in detergent. This affinity enhancement highlights the importance of membrane partitioning when a drug accesses the transporter in the membrane
4
. Furthermore, the transporter in the crystal structure opens its drug pathway at the level of the membrane’s inner leaflet. In the helices flanking the opening to the membrane, we observe extended loops that may mediate drug binding, function as hinges to gate the pathway or both. We also find that the interface between the transmembrane and nucleotide-binding domains, which couples ATP hydrolysis to transport, contains a ball-and-socket joint and salt bridges similar to the ATP-binding cassette importers
5
, suggesting that ATP-binding cassette exporters and importers may use similar mechanisms to achieve alternating access for transport. Finally, a model of human P-gp derived from the structure of
C. elegans
P-gp not only is compatible with decades of biochemical analysis
6
,
7
,
8
,
9
,
10
,
11
,
12
, but also helps to explain perplexing functional data regarding the Phe335Ala mutant
13
,
14
. These results increase our understanding of the structure and function of this important molecule.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature11448</identifier><identifier>PMID: 23000902</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/535 ; 631/45/612/1231 ; 631/67/1059/2326 ; Adenosine triphosphatase ; Adenosine Triphosphate - metabolism ; Analysis ; Analytical, structural and metabolic biochemistry ; Animals ; ATP ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - chemistry ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism ; Binding Sites ; Biochemical analysis ; Biochemistry ; Biological and medical sciences ; Caenorhabditis elegans ; Caenorhabditis elegans - chemistry ; Chemical properties ; Crystal structure ; Crystalline structure ; Crystallography, X-Ray ; Crystals ; Dactinomycin - metabolism ; Drug resistance ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Genetic aspects ; Genetics ; Glycoproteins ; Humanities and Social Sciences ; Humans ; Hydrolysis ; letter ; Lipid Bilayers - metabolism ; Membranes ; Models, Biological ; Models, Molecular ; Molecular and cellular biology ; Molecular biophysics ; multidisciplinary ; Nematodes ; Paclitaxel - metabolism ; Properties ; Protein Structure, Tertiary ; Proteins ; Science ; Structural Homology, Protein ; Structure ; Structure in molecular biology ; Structure-Activity Relationship ; Testing ; Xenobiotics</subject><ispartof>Nature, 2012-10, Vol.490 (7421), p.566-569</ispartof><rights>Springer Nature Limited 2012</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 25, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c769t-63a5c6db283f2c849c456287504c8db5f1041f7a7fc34d4ec0605fc164e553fe3</citedby><cites>FETCH-LOGICAL-c769t-63a5c6db283f2c849c456287504c8db5f1041f7a7fc34d4ec0605fc164e553fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature11448$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature11448$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26460561$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23000902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1068569$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Mi Sun</creatorcontrib><creatorcontrib>Oldham, Michael L.</creatorcontrib><creatorcontrib>Zhang, Qiuju</creatorcontrib><creatorcontrib>Chen, Jue</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Biochemical and structural analysis of the drug transporter P-glycoprotein in
Caenorhabditis elegans
at a resolution of 3.4 angstroms is used to generate a homology model of the human protein and supports a picture in which P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the cell membrane.
Multidrug transporter structure
The ABC (ATP-binding cassette) transporter P-glycoprotein confers multidrug resistance in cancer cells. In this manuscript, the authors biochemically and structurally characterize P-glycoprotein from
Caenorhabditis elegans
and use that information to generate a homology model for human P-glycoprotein. Their data suggest how P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the membrane.
P-glycoprotein (P-gp) is an ATP-binding cassette transporter that confers multidrug resistance in cancer cells
1
,
2
. It also affects the absorption, distribution and clearance of cancer-unrelated drugs and xenobiotics. For these reasons, the structure and function of P-gp have been studied extensively for decades
3
. Here we present biochemical characterization of P-gp from
Caenorhabditis elegans
and its crystal structure at a resolution of 3.4 ångströms. We find that the apparent affinities of P-gp for anticancer drugs actinomycin D and paclitaxel are approximately 4,000 and 100 times higher, respectively, in the membrane bilayer than in detergent. This affinity enhancement highlights the importance of membrane partitioning when a drug accesses the transporter in the membrane
4
. Furthermore, the transporter in the crystal structure opens its drug pathway at the level of the membrane’s inner leaflet. In the helices flanking the opening to the membrane, we observe extended loops that may mediate drug binding, function as hinges to gate the pathway or both. We also find that the interface between the transmembrane and nucleotide-binding domains, which couples ATP hydrolysis to transport, contains a ball-and-socket joint and salt bridges similar to the ATP-binding cassette importers
5
, suggesting that ATP-binding cassette exporters and importers may use similar mechanisms to achieve alternating access for transport. Finally, a model of human P-gp derived from the structure of
C. elegans
P-gp not only is compatible with decades of biochemical analysis
6
,
7
,
8
,
9
,
10
,
11
,
12
, but also helps to explain perplexing functional data regarding the Phe335Ala mutant
13
,
14
. These results increase our understanding of the structure and function of this important molecule.</description><subject>631/45/535</subject><subject>631/45/612/1231</subject><subject>631/67/1059/2326</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Analysis</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>ATP</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - chemistry</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</subject><subject>Binding Sites</subject><subject>Biochemical analysis</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - chemistry</subject><subject>Chemical properties</subject><subject>Crystal structure</subject><subject>Crystalline structure</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Dactinomycin - metabolism</subject><subject>Drug resistance</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Glycoproteins</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>letter</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>Molecular biophysics</subject><subject>multidisciplinary</subject><subject>Nematodes</subject><subject>Paclitaxel - metabolism</subject><subject>Properties</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Science</subject><subject>Structural Homology, Protein</subject><subject>Structure</subject><subject>Structure in molecular biology</subject><subject>Structure-Activity Relationship</subject><subject>Testing</subject><subject>Xenobiotics</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0t2L1DAQAPAiireePvku5URQtGfSJmn28VhOPThQ_HjwqWTTSTdHm-wlKbj__c2yq3ZlVUppaH-ZmXQmy55Sck5JJd86lcYAlDIm72UzympRMCHr-9mMkFIWRFbiJHsU4w0hhNOaPcxOygrXc1LOsu-LsIlJ9XlMYdTbQLk3eVpBPox9sm0YuzwF5eLahwQh_1R0_Ub7dfAJrMtN8EO-UOB8WKlla5ONOfTQ4YbH2QOj-ghP9s_T7Nu7y6-LD8X1x_dXi4vrQtdingpRKa5FuyxlZUot2VwzLkpZc8K0bJfcUMKoqVVtdMVaBpoIwo2mggHnlYHqNDvbxfUx2SZqm0CvtHcOdGooEZKLOaKXO4SF344QUzPYqKHvlQM_xoZSitGorBnS53_QGz8Gh0dAJWkpOJ-qTvXQWGc8_iW9DdpciIoJLLKc_1NVRNS8xhtVcUR14CCo3jswFl8f-LMjXq_tbTNN_Vc0jXR-BOHVwmD10dSvDjagSfAjdWqMsbn68vnw8P-z07ivd1YHH2MA06yDHVTYYAeb7ZQ3kylH_WzfonE5QPvL_hxrBC_2QEWteoMDrG387QTDEgVF92bnIn5yHYRJr4_kvQOwcQ0e</recordid><startdate>20121025</startdate><enddate>20121025</enddate><creator>Jin, Mi Sun</creator><creator>Oldham, Michael L.</creator><creator>Zhang, Qiuju</creator><creator>Chen, Jue</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20121025</creationdate><title>Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans</title><author>Jin, Mi Sun ; Oldham, Michael L. ; Zhang, Qiuju ; Chen, Jue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c769t-63a5c6db283f2c849c456287504c8db5f1041f7a7fc34d4ec0605fc164e553fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/45/535</topic><topic>631/45/612/1231</topic><topic>631/67/1059/2326</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Analysis</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>ATP</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - chemistry</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</topic><topic>Binding Sites</topic><topic>Biochemical analysis</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - chemistry</topic><topic>Chemical properties</topic><topic>Crystal structure</topic><topic>Crystalline structure</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Dactinomycin - metabolism</topic><topic>Drug resistance</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Glycoproteins</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>letter</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>Molecular biophysics</topic><topic>multidisciplinary</topic><topic>Nematodes</topic><topic>Paclitaxel - metabolism</topic><topic>Properties</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Science</topic><topic>Structural Homology, Protein</topic><topic>Structure</topic><topic>Structure in molecular biology</topic><topic>Structure-Activity Relationship</topic><topic>Testing</topic><topic>Xenobiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Mi Sun</creatorcontrib><creatorcontrib>Oldham, Michael L.</creatorcontrib><creatorcontrib>Zhang, Qiuju</creatorcontrib><creatorcontrib>Chen, Jue</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Mi Sun</au><au>Oldham, Michael L.</au><au>Zhang, Qiuju</au><au>Chen, Jue</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2012-10-25</date><risdate>2012</risdate><volume>490</volume><issue>7421</issue><spage>566</spage><epage>569</epage><pages>566-569</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Biochemical and structural analysis of the drug transporter P-glycoprotein in
Caenorhabditis elegans
at a resolution of 3.4 angstroms is used to generate a homology model of the human protein and supports a picture in which P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the cell membrane.
Multidrug transporter structure
The ABC (ATP-binding cassette) transporter P-glycoprotein confers multidrug resistance in cancer cells. In this manuscript, the authors biochemically and structurally characterize P-glycoprotein from
Caenorhabditis elegans
and use that information to generate a homology model for human P-glycoprotein. Their data suggest how P-glycoprotein uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the membrane.
P-glycoprotein (P-gp) is an ATP-binding cassette transporter that confers multidrug resistance in cancer cells
1
,
2
. It also affects the absorption, distribution and clearance of cancer-unrelated drugs and xenobiotics. For these reasons, the structure and function of P-gp have been studied extensively for decades
3
. Here we present biochemical characterization of P-gp from
Caenorhabditis elegans
and its crystal structure at a resolution of 3.4 ångströms. We find that the apparent affinities of P-gp for anticancer drugs actinomycin D and paclitaxel are approximately 4,000 and 100 times higher, respectively, in the membrane bilayer than in detergent. This affinity enhancement highlights the importance of membrane partitioning when a drug accesses the transporter in the membrane
4
. Furthermore, the transporter in the crystal structure opens its drug pathway at the level of the membrane’s inner leaflet. In the helices flanking the opening to the membrane, we observe extended loops that may mediate drug binding, function as hinges to gate the pathway or both. We also find that the interface between the transmembrane and nucleotide-binding domains, which couples ATP hydrolysis to transport, contains a ball-and-socket joint and salt bridges similar to the ATP-binding cassette importers
5
, suggesting that ATP-binding cassette exporters and importers may use similar mechanisms to achieve alternating access for transport. Finally, a model of human P-gp derived from the structure of
C. elegans
P-gp not only is compatible with decades of biochemical analysis
6
,
7
,
8
,
9
,
10
,
11
,
12
, but also helps to explain perplexing functional data regarding the Phe335Ala mutant
13
,
14
. These results increase our understanding of the structure and function of this important molecule.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23000902</pmid><doi>10.1038/nature11448</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2012-10, Vol.490 (7421), p.566-569 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_1115531874 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/45/535 631/45/612/1231 631/67/1059/2326 Adenosine triphosphatase Adenosine Triphosphate - metabolism Analysis Analytical, structural and metabolic biochemistry Animals ATP ATP Binding Cassette Transporter, Subfamily B, Member 1 - chemistry ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism Binding Sites Biochemical analysis Biochemistry Biological and medical sciences Caenorhabditis elegans Caenorhabditis elegans - chemistry Chemical properties Crystal structure Crystalline structure Crystallography, X-Ray Crystals Dactinomycin - metabolism Drug resistance Enzymes Fundamental and applied biological sciences. Psychology Genetic aspects Genetics Glycoproteins Humanities and Social Sciences Humans Hydrolysis letter Lipid Bilayers - metabolism Membranes Models, Biological Models, Molecular Molecular and cellular biology Molecular biophysics multidisciplinary Nematodes Paclitaxel - metabolism Properties Protein Structure, Tertiary Proteins Science Structural Homology, Protein Structure Structure in molecular biology Structure-Activity Relationship Testing Xenobiotics |
title | Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20the%20multidrug%20transporter%20P-glycoprotein%20from%20Caenorhabditis%20elegans&rft.jtitle=Nature&rft.au=Jin,%20Mi%20Sun&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2012-10-25&rft.volume=490&rft.issue=7421&rft.spage=566&rft.epage=569&rft.pages=566-569&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature11448&rft_dat=%3Cgale_osti_%3EA306757675%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1181265574&rft_id=info:pmid/23000902&rft_galeid=A306757675&rfr_iscdi=true |