Evaluation of the local temperature of conductive filaments in resistive switching materials

The resistive switching effect in metal oxides and other dielectric materials is among the leading future non-volatile memory technologies. Resistive switching is widely ascribed to the formation and rupture of conductive filaments in the oxide, which are generated by temperature-enhanced nano-scale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2012-11, Vol.23 (46), p.465201-465201
Hauptverfasser: Yalon, E, Cohen, S, Gavrilov, A, Ritter, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The resistive switching effect in metal oxides and other dielectric materials is among the leading future non-volatile memory technologies. Resistive switching is widely ascribed to the formation and rupture of conductive filaments in the oxide, which are generated by temperature-enhanced nano-scale ion migration or other thermal effects. In spite of the central role of the local filament temperature on the switching effect, as well as on the conduction and reliability physics, no measurement methods of the filament temperature are yet available. In this work, we report on a method for evaluating the conducting filament temperature, using a metal-insulator-semiconductor bipolar transistor structure. The filament temperature is obtained by analyzing the thermal excitation rate of electrons from the filament Fermi level into the conduction band of a p-type semiconductor electrode. Measurements were carried out to obtain the conductive filament temperature in hafnia at varying ambient temperatures in the range of 3-300 K. Significant Joule heating of the filament was observed across the entire measured ambient temperature range. The extracted temperatures provide physical insight into the resistive switching effect.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/23/46/465201