Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data
The construction of compartmental models of neurons involves tuning a set of parameters to make the model neuron behave as realistically as possible. While the parameter space of single-compartment models or other simple models can be exhaustively searched, the introduction of dendritic geometry cau...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience methods 2012-09, Vol.210 (1), p.22-34 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 1 |
container_start_page | 22 |
container_title | Journal of neuroscience methods |
container_volume | 210 |
creator | Bahl, Armin Stemmler, Martin B. Herz, Andreas V.M. Roth, Arnd |
description | The construction of compartmental models of neurons involves tuning a set of parameters to make the model neuron behave as realistically as possible. While the parameter space of single-compartment models or other simple models can be exhaustively searched, the introduction of dendritic geometry causes the number of parameters to balloon. As parameter tuning is a daunting and time-consuming task when performed manually, reliable methods for automatically optimizing compartmental models are desperately needed, as only optimized models can capture the behavior of real neurons. Here we present a three-step strategy to automatically build reduced models of layer 5 pyramidal neurons that closely reproduce experimental data. First, we reduce the pattern of dendritic branches of a detailed model to a set of equivalent primary dendrites. Second, the ion channel densities are estimated using a multi-objective optimization strategy to fit the voltage trace recorded under two conditions – with and without the apical dendrite occluded by pinching. Finally, we tune dendritic calcium channel parameters to model the initiation of dendritic calcium spikes and the coupling between soma and dendrite. More generally, this new method can be applied to construct families of models of different neuron types, with applications ranging from the study of information processing in single neurons to realistic simulations of large-scale network dynamics. |
doi_str_mv | 10.1016/j.jneumeth.2012.04.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1115526271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016502701200129X</els_id><sourcerecordid>1115526271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-f9cddfbc20b552bb17e255b89aae953d3b34d472fdefced1f6dc7d5b872db1953</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwC5WXbBJsN49mR1XxkiqxAQmJheXHRLhK4mA7iPL1OGrLlpUXPnfmzkFoTklKCS1utum2g6GF8JEyQllKspSQ4gRN6bJkSVEu307RNIJ5QlhJJujC-y0hJKtIcY4mjOUsq6rFFL2vhmBbEUBj2wfTmh8RjO2wrbHADvSg4k8jduBwjvudE63RosEKmga3VkODpfBjuMPw3YMzLXQhAloEcYnOatF4uDq8M_R6f_eyfkw2zw9P69UmURktQlJXSutaKkZknjMpaQksz-WyEgKqfKEXcpHprGS1hjq2oXWhVakjUDItaSRm6Ho_t3f2cwAfeGv82FB0YAfPKaVxcMFKGtFijypnvXdQ8z5WFm7HKeGjWL7lR7F8FMtJxqPYGJwfdgyyBf0XO5qMwO0egHjplwHHvTLQxcLGgQpcW_Pfjl9ZY49J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1115526271</pqid></control><display><type>article</type><title>Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bahl, Armin ; Stemmler, Martin B. ; Herz, Andreas V.M. ; Roth, Arnd</creator><creatorcontrib>Bahl, Armin ; Stemmler, Martin B. ; Herz, Andreas V.M. ; Roth, Arnd</creatorcontrib><description>The construction of compartmental models of neurons involves tuning a set of parameters to make the model neuron behave as realistically as possible. While the parameter space of single-compartment models or other simple models can be exhaustively searched, the introduction of dendritic geometry causes the number of parameters to balloon. As parameter tuning is a daunting and time-consuming task when performed manually, reliable methods for automatically optimizing compartmental models are desperately needed, as only optimized models can capture the behavior of real neurons. Here we present a three-step strategy to automatically build reduced models of layer 5 pyramidal neurons that closely reproduce experimental data. First, we reduce the pattern of dendritic branches of a detailed model to a set of equivalent primary dendrites. Second, the ion channel densities are estimated using a multi-objective optimization strategy to fit the voltage trace recorded under two conditions – with and without the apical dendrite occluded by pinching. Finally, we tune dendritic calcium channel parameters to model the initiation of dendritic calcium spikes and the coupling between soma and dendrite. More generally, this new method can be applied to construct families of models of different neuron types, with applications ranging from the study of information processing in single neurons to realistic simulations of large-scale network dynamics.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2012.04.006</identifier><identifier>PMID: 22524993</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Action Potentials - physiology ; Algorithms ; Animals ; Automated fitting ; Biological Evolution ; Calcium Signaling - physiology ; Cell Compartmentation - physiology ; Compartmental model ; Dendrites - physiology ; Dendritic calcium dynamics ; Dendritic geometry ; Evolutionary algorithm ; Firing pattern ; Models, Neurological ; Multi-objective optimization ; Pyramidal Cells - physiology ; Pyramidal neuron</subject><ispartof>Journal of neuroscience methods, 2012-09, Vol.210 (1), p.22-34</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-f9cddfbc20b552bb17e255b89aae953d3b34d472fdefced1f6dc7d5b872db1953</citedby><cites>FETCH-LOGICAL-c416t-f9cddfbc20b552bb17e255b89aae953d3b34d472fdefced1f6dc7d5b872db1953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016502701200129X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22524993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahl, Armin</creatorcontrib><creatorcontrib>Stemmler, Martin B.</creatorcontrib><creatorcontrib>Herz, Andreas V.M.</creatorcontrib><creatorcontrib>Roth, Arnd</creatorcontrib><title>Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>The construction of compartmental models of neurons involves tuning a set of parameters to make the model neuron behave as realistically as possible. While the parameter space of single-compartment models or other simple models can be exhaustively searched, the introduction of dendritic geometry causes the number of parameters to balloon. As parameter tuning is a daunting and time-consuming task when performed manually, reliable methods for automatically optimizing compartmental models are desperately needed, as only optimized models can capture the behavior of real neurons. Here we present a three-step strategy to automatically build reduced models of layer 5 pyramidal neurons that closely reproduce experimental data. First, we reduce the pattern of dendritic branches of a detailed model to a set of equivalent primary dendrites. Second, the ion channel densities are estimated using a multi-objective optimization strategy to fit the voltage trace recorded under two conditions – with and without the apical dendrite occluded by pinching. Finally, we tune dendritic calcium channel parameters to model the initiation of dendritic calcium spikes and the coupling between soma and dendrite. More generally, this new method can be applied to construct families of models of different neuron types, with applications ranging from the study of information processing in single neurons to realistic simulations of large-scale network dynamics.</description><subject>Action Potentials - physiology</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Automated fitting</subject><subject>Biological Evolution</subject><subject>Calcium Signaling - physiology</subject><subject>Cell Compartmentation - physiology</subject><subject>Compartmental model</subject><subject>Dendrites - physiology</subject><subject>Dendritic calcium dynamics</subject><subject>Dendritic geometry</subject><subject>Evolutionary algorithm</subject><subject>Firing pattern</subject><subject>Models, Neurological</subject><subject>Multi-objective optimization</subject><subject>Pyramidal Cells - physiology</subject><subject>Pyramidal neuron</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwC5WXbBJsN49mR1XxkiqxAQmJheXHRLhK4mA7iPL1OGrLlpUXPnfmzkFoTklKCS1utum2g6GF8JEyQllKspSQ4gRN6bJkSVEu307RNIJ5QlhJJujC-y0hJKtIcY4mjOUsq6rFFL2vhmBbEUBj2wfTmh8RjO2wrbHADvSg4k8jduBwjvudE63RosEKmga3VkODpfBjuMPw3YMzLXQhAloEcYnOatF4uDq8M_R6f_eyfkw2zw9P69UmURktQlJXSutaKkZknjMpaQksz-WyEgKqfKEXcpHprGS1hjq2oXWhVakjUDItaSRm6Ho_t3f2cwAfeGv82FB0YAfPKaVxcMFKGtFijypnvXdQ8z5WFm7HKeGjWL7lR7F8FMtJxqPYGJwfdgyyBf0XO5qMwO0egHjplwHHvTLQxcLGgQpcW_Pfjl9ZY49J</recordid><startdate>20120915</startdate><enddate>20120915</enddate><creator>Bahl, Armin</creator><creator>Stemmler, Martin B.</creator><creator>Herz, Andreas V.M.</creator><creator>Roth, Arnd</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120915</creationdate><title>Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data</title><author>Bahl, Armin ; Stemmler, Martin B. ; Herz, Andreas V.M. ; Roth, Arnd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-f9cddfbc20b552bb17e255b89aae953d3b34d472fdefced1f6dc7d5b872db1953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - physiology</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Automated fitting</topic><topic>Biological Evolution</topic><topic>Calcium Signaling - physiology</topic><topic>Cell Compartmentation - physiology</topic><topic>Compartmental model</topic><topic>Dendrites - physiology</topic><topic>Dendritic calcium dynamics</topic><topic>Dendritic geometry</topic><topic>Evolutionary algorithm</topic><topic>Firing pattern</topic><topic>Models, Neurological</topic><topic>Multi-objective optimization</topic><topic>Pyramidal Cells - physiology</topic><topic>Pyramidal neuron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahl, Armin</creatorcontrib><creatorcontrib>Stemmler, Martin B.</creatorcontrib><creatorcontrib>Herz, Andreas V.M.</creatorcontrib><creatorcontrib>Roth, Arnd</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahl, Armin</au><au>Stemmler, Martin B.</au><au>Herz, Andreas V.M.</au><au>Roth, Arnd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2012-09-15</date><risdate>2012</risdate><volume>210</volume><issue>1</issue><spage>22</spage><epage>34</epage><pages>22-34</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>The construction of compartmental models of neurons involves tuning a set of parameters to make the model neuron behave as realistically as possible. While the parameter space of single-compartment models or other simple models can be exhaustively searched, the introduction of dendritic geometry causes the number of parameters to balloon. As parameter tuning is a daunting and time-consuming task when performed manually, reliable methods for automatically optimizing compartmental models are desperately needed, as only optimized models can capture the behavior of real neurons. Here we present a three-step strategy to automatically build reduced models of layer 5 pyramidal neurons that closely reproduce experimental data. First, we reduce the pattern of dendritic branches of a detailed model to a set of equivalent primary dendrites. Second, the ion channel densities are estimated using a multi-objective optimization strategy to fit the voltage trace recorded under two conditions – with and without the apical dendrite occluded by pinching. Finally, we tune dendritic calcium channel parameters to model the initiation of dendritic calcium spikes and the coupling between soma and dendrite. More generally, this new method can be applied to construct families of models of different neuron types, with applications ranging from the study of information processing in single neurons to realistic simulations of large-scale network dynamics.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22524993</pmid><doi>10.1016/j.jneumeth.2012.04.006</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0270 |
ispartof | Journal of neuroscience methods, 2012-09, Vol.210 (1), p.22-34 |
issn | 0165-0270 1872-678X |
language | eng |
recordid | cdi_proquest_miscellaneous_1115526271 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Action Potentials - physiology Algorithms Animals Automated fitting Biological Evolution Calcium Signaling - physiology Cell Compartmentation - physiology Compartmental model Dendrites - physiology Dendritic calcium dynamics Dendritic geometry Evolutionary algorithm Firing pattern Models, Neurological Multi-objective optimization Pyramidal Cells - physiology Pyramidal neuron |
title | Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20optimization%20of%20a%20reduced%20layer%205%20pyramidal%20cell%20model%20based%20on%20experimental%20data&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Bahl,%20Armin&rft.date=2012-09-15&rft.volume=210&rft.issue=1&rft.spage=22&rft.epage=34&rft.pages=22-34&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2012.04.006&rft_dat=%3Cproquest_cross%3E1115526271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1115526271&rft_id=info:pmid/22524993&rft_els_id=S016502701200129X&rfr_iscdi=true |