Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data

The construction of compartmental models of neurons involves tuning a set of parameters to make the model neuron behave as realistically as possible. While the parameter space of single-compartment models or other simple models can be exhaustively searched, the introduction of dendritic geometry cau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2012-09, Vol.210 (1), p.22-34
Hauptverfasser: Bahl, Armin, Stemmler, Martin B., Herz, Andreas V.M., Roth, Arnd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 22
container_title Journal of neuroscience methods
container_volume 210
creator Bahl, Armin
Stemmler, Martin B.
Herz, Andreas V.M.
Roth, Arnd
description The construction of compartmental models of neurons involves tuning a set of parameters to make the model neuron behave as realistically as possible. While the parameter space of single-compartment models or other simple models can be exhaustively searched, the introduction of dendritic geometry causes the number of parameters to balloon. As parameter tuning is a daunting and time-consuming task when performed manually, reliable methods for automatically optimizing compartmental models are desperately needed, as only optimized models can capture the behavior of real neurons. Here we present a three-step strategy to automatically build reduced models of layer 5 pyramidal neurons that closely reproduce experimental data. First, we reduce the pattern of dendritic branches of a detailed model to a set of equivalent primary dendrites. Second, the ion channel densities are estimated using a multi-objective optimization strategy to fit the voltage trace recorded under two conditions – with and without the apical dendrite occluded by pinching. Finally, we tune dendritic calcium channel parameters to model the initiation of dendritic calcium spikes and the coupling between soma and dendrite. More generally, this new method can be applied to construct families of models of different neuron types, with applications ranging from the study of information processing in single neurons to realistic simulations of large-scale network dynamics.
doi_str_mv 10.1016/j.jneumeth.2012.04.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1115526271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016502701200129X</els_id><sourcerecordid>1115526271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-f9cddfbc20b552bb17e255b89aae953d3b34d472fdefced1f6dc7d5b872db1953</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwC5WXbBJsN49mR1XxkiqxAQmJheXHRLhK4mA7iPL1OGrLlpUXPnfmzkFoTklKCS1utum2g6GF8JEyQllKspSQ4gRN6bJkSVEu307RNIJ5QlhJJujC-y0hJKtIcY4mjOUsq6rFFL2vhmBbEUBj2wfTmh8RjO2wrbHADvSg4k8jduBwjvudE63RosEKmga3VkODpfBjuMPw3YMzLXQhAloEcYnOatF4uDq8M_R6f_eyfkw2zw9P69UmURktQlJXSutaKkZknjMpaQksz-WyEgKqfKEXcpHprGS1hjq2oXWhVakjUDItaSRm6Ho_t3f2cwAfeGv82FB0YAfPKaVxcMFKGtFijypnvXdQ8z5WFm7HKeGjWL7lR7F8FMtJxqPYGJwfdgyyBf0XO5qMwO0egHjplwHHvTLQxcLGgQpcW_Pfjl9ZY49J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1115526271</pqid></control><display><type>article</type><title>Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bahl, Armin ; Stemmler, Martin B. ; Herz, Andreas V.M. ; Roth, Arnd</creator><creatorcontrib>Bahl, Armin ; Stemmler, Martin B. ; Herz, Andreas V.M. ; Roth, Arnd</creatorcontrib><description>The construction of compartmental models of neurons involves tuning a set of parameters to make the model neuron behave as realistically as possible. While the parameter space of single-compartment models or other simple models can be exhaustively searched, the introduction of dendritic geometry causes the number of parameters to balloon. As parameter tuning is a daunting and time-consuming task when performed manually, reliable methods for automatically optimizing compartmental models are desperately needed, as only optimized models can capture the behavior of real neurons. Here we present a three-step strategy to automatically build reduced models of layer 5 pyramidal neurons that closely reproduce experimental data. First, we reduce the pattern of dendritic branches of a detailed model to a set of equivalent primary dendrites. Second, the ion channel densities are estimated using a multi-objective optimization strategy to fit the voltage trace recorded under two conditions – with and without the apical dendrite occluded by pinching. Finally, we tune dendritic calcium channel parameters to model the initiation of dendritic calcium spikes and the coupling between soma and dendrite. More generally, this new method can be applied to construct families of models of different neuron types, with applications ranging from the study of information processing in single neurons to realistic simulations of large-scale network dynamics.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2012.04.006</identifier><identifier>PMID: 22524993</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Action Potentials - physiology ; Algorithms ; Animals ; Automated fitting ; Biological Evolution ; Calcium Signaling - physiology ; Cell Compartmentation - physiology ; Compartmental model ; Dendrites - physiology ; Dendritic calcium dynamics ; Dendritic geometry ; Evolutionary algorithm ; Firing pattern ; Models, Neurological ; Multi-objective optimization ; Pyramidal Cells - physiology ; Pyramidal neuron</subject><ispartof>Journal of neuroscience methods, 2012-09, Vol.210 (1), p.22-34</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-f9cddfbc20b552bb17e255b89aae953d3b34d472fdefced1f6dc7d5b872db1953</citedby><cites>FETCH-LOGICAL-c416t-f9cddfbc20b552bb17e255b89aae953d3b34d472fdefced1f6dc7d5b872db1953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016502701200129X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22524993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahl, Armin</creatorcontrib><creatorcontrib>Stemmler, Martin B.</creatorcontrib><creatorcontrib>Herz, Andreas V.M.</creatorcontrib><creatorcontrib>Roth, Arnd</creatorcontrib><title>Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>The construction of compartmental models of neurons involves tuning a set of parameters to make the model neuron behave as realistically as possible. While the parameter space of single-compartment models or other simple models can be exhaustively searched, the introduction of dendritic geometry causes the number of parameters to balloon. As parameter tuning is a daunting and time-consuming task when performed manually, reliable methods for automatically optimizing compartmental models are desperately needed, as only optimized models can capture the behavior of real neurons. Here we present a three-step strategy to automatically build reduced models of layer 5 pyramidal neurons that closely reproduce experimental data. First, we reduce the pattern of dendritic branches of a detailed model to a set of equivalent primary dendrites. Second, the ion channel densities are estimated using a multi-objective optimization strategy to fit the voltage trace recorded under two conditions – with and without the apical dendrite occluded by pinching. Finally, we tune dendritic calcium channel parameters to model the initiation of dendritic calcium spikes and the coupling between soma and dendrite. More generally, this new method can be applied to construct families of models of different neuron types, with applications ranging from the study of information processing in single neurons to realistic simulations of large-scale network dynamics.</description><subject>Action Potentials - physiology</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Automated fitting</subject><subject>Biological Evolution</subject><subject>Calcium Signaling - physiology</subject><subject>Cell Compartmentation - physiology</subject><subject>Compartmental model</subject><subject>Dendrites - physiology</subject><subject>Dendritic calcium dynamics</subject><subject>Dendritic geometry</subject><subject>Evolutionary algorithm</subject><subject>Firing pattern</subject><subject>Models, Neurological</subject><subject>Multi-objective optimization</subject><subject>Pyramidal Cells - physiology</subject><subject>Pyramidal neuron</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwC5WXbBJsN49mR1XxkiqxAQmJheXHRLhK4mA7iPL1OGrLlpUXPnfmzkFoTklKCS1utum2g6GF8JEyQllKspSQ4gRN6bJkSVEu307RNIJ5QlhJJujC-y0hJKtIcY4mjOUsq6rFFL2vhmBbEUBj2wfTmh8RjO2wrbHADvSg4k8jduBwjvudE63RosEKmga3VkODpfBjuMPw3YMzLXQhAloEcYnOatF4uDq8M_R6f_eyfkw2zw9P69UmURktQlJXSutaKkZknjMpaQksz-WyEgKqfKEXcpHprGS1hjq2oXWhVakjUDItaSRm6Ho_t3f2cwAfeGv82FB0YAfPKaVxcMFKGtFijypnvXdQ8z5WFm7HKeGjWL7lR7F8FMtJxqPYGJwfdgyyBf0XO5qMwO0egHjplwHHvTLQxcLGgQpcW_Pfjl9ZY49J</recordid><startdate>20120915</startdate><enddate>20120915</enddate><creator>Bahl, Armin</creator><creator>Stemmler, Martin B.</creator><creator>Herz, Andreas V.M.</creator><creator>Roth, Arnd</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120915</creationdate><title>Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data</title><author>Bahl, Armin ; Stemmler, Martin B. ; Herz, Andreas V.M. ; Roth, Arnd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-f9cddfbc20b552bb17e255b89aae953d3b34d472fdefced1f6dc7d5b872db1953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - physiology</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Automated fitting</topic><topic>Biological Evolution</topic><topic>Calcium Signaling - physiology</topic><topic>Cell Compartmentation - physiology</topic><topic>Compartmental model</topic><topic>Dendrites - physiology</topic><topic>Dendritic calcium dynamics</topic><topic>Dendritic geometry</topic><topic>Evolutionary algorithm</topic><topic>Firing pattern</topic><topic>Models, Neurological</topic><topic>Multi-objective optimization</topic><topic>Pyramidal Cells - physiology</topic><topic>Pyramidal neuron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahl, Armin</creatorcontrib><creatorcontrib>Stemmler, Martin B.</creatorcontrib><creatorcontrib>Herz, Andreas V.M.</creatorcontrib><creatorcontrib>Roth, Arnd</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahl, Armin</au><au>Stemmler, Martin B.</au><au>Herz, Andreas V.M.</au><au>Roth, Arnd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2012-09-15</date><risdate>2012</risdate><volume>210</volume><issue>1</issue><spage>22</spage><epage>34</epage><pages>22-34</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>The construction of compartmental models of neurons involves tuning a set of parameters to make the model neuron behave as realistically as possible. While the parameter space of single-compartment models or other simple models can be exhaustively searched, the introduction of dendritic geometry causes the number of parameters to balloon. As parameter tuning is a daunting and time-consuming task when performed manually, reliable methods for automatically optimizing compartmental models are desperately needed, as only optimized models can capture the behavior of real neurons. Here we present a three-step strategy to automatically build reduced models of layer 5 pyramidal neurons that closely reproduce experimental data. First, we reduce the pattern of dendritic branches of a detailed model to a set of equivalent primary dendrites. Second, the ion channel densities are estimated using a multi-objective optimization strategy to fit the voltage trace recorded under two conditions – with and without the apical dendrite occluded by pinching. Finally, we tune dendritic calcium channel parameters to model the initiation of dendritic calcium spikes and the coupling between soma and dendrite. More generally, this new method can be applied to construct families of models of different neuron types, with applications ranging from the study of information processing in single neurons to realistic simulations of large-scale network dynamics.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22524993</pmid><doi>10.1016/j.jneumeth.2012.04.006</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2012-09, Vol.210 (1), p.22-34
issn 0165-0270
1872-678X
language eng
recordid cdi_proquest_miscellaneous_1115526271
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action Potentials - physiology
Algorithms
Animals
Automated fitting
Biological Evolution
Calcium Signaling - physiology
Cell Compartmentation - physiology
Compartmental model
Dendrites - physiology
Dendritic calcium dynamics
Dendritic geometry
Evolutionary algorithm
Firing pattern
Models, Neurological
Multi-objective optimization
Pyramidal Cells - physiology
Pyramidal neuron
title Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20optimization%20of%20a%20reduced%20layer%205%20pyramidal%20cell%20model%20based%20on%20experimental%20data&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Bahl,%20Armin&rft.date=2012-09-15&rft.volume=210&rft.issue=1&rft.spage=22&rft.epage=34&rft.pages=22-34&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2012.04.006&rft_dat=%3Cproquest_cross%3E1115526271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1115526271&rft_id=info:pmid/22524993&rft_els_id=S016502701200129X&rfr_iscdi=true