Comprehensive Molecular Motion Capture for Sphingomyelin by Site-Specific Deuterium Labeling

Lipid rafts have attracted much attention because of their significant functional roles in membrane-associated processes. It is thought that sphingomyelin and cholesterol are essential for forming lipid rafts; however, their motion characteristics are not fully understood despite numerous studies. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2012-10, Vol.51 (42), p.8363-8370
Hauptverfasser: Matsumori, Nobuaki, Yasuda, Tomokazu, Okazaki, Hiroki, Suzuki, Takashi, Yamaguchi, Toshiyuki, Tsuchikawa, Hiroshi, Doi, Mototsugu, Oishi, Tohru, Murata, Michio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8370
container_issue 42
container_start_page 8363
container_title Biochemistry (Easton)
container_volume 51
creator Matsumori, Nobuaki
Yasuda, Tomokazu
Okazaki, Hiroki
Suzuki, Takashi
Yamaguchi, Toshiyuki
Tsuchikawa, Hiroshi
Doi, Mototsugu
Oishi, Tohru
Murata, Michio
description Lipid rafts have attracted much attention because of their significant functional roles in membrane-associated processes. It is thought that sphingomyelin and cholesterol are essential for forming lipid rafts; however, their motion characteristics are not fully understood despite numerous studies. Here we show accurate local motions encompassing an entire sphingomyelin molecule, which were captured by measuring quadrupole splittings for 19 kinds of site-specifically deuterated sphingomyelins (that is, molecular motion capture of sphingomyelin). The quadrupole splitting profiles, which are distinct from those reported from perdeuterated sphingomyelins or simulation studies, reveal that cholesterol enhances the order in the middle parts of the alkyl chains more efficaciously than at the shallow positions. Comparison with dimyristoylphosphocholine bilayers suggests that cholesterol is deeper in sphingomyelin bilayers, which likely explains the so-called umbrella effect. The experiments also demonstrate that (i) the C2′–C3′ bond predominantly takes the gauche conformation, (ii) the net ordering effect of cholesterol in sphingomyelin bilayers is not larger than that in phosphatidylcholine bilayers, (iii) cholesterol has no specific preference for the acyl or sphingosine chain, (iv) the acyl and sphingosine chains seem mismatched by about two methylene lengths, and (v) the motion of the upper regions of sphingomyelin chains is less temperature dependent than that of lower regions probably due to intermolecular hydrogen bond formation among SM molecules. These insights into the atomic-level dynamics of sphingomyelin provide critical clues to understanding the mechanism of raft formation.
doi_str_mv 10.1021/bi3009399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1114949971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1114949971</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-8745a652a3e292b2f70cf40d78b212c2fbd81d0158759452860d67986565a7013</originalsourceid><addsrcrecordid>eNptkE1LxDAQQIMo7vpx8A9IL4IeqpO0aZqj1E9Y8bB6E0raTneztE1NGmH_vV123ZOnmYHHg3mEXFC4pcDoXaEjABlJeUCmlDMIYyn5IZkCQBIymcCEnDi3Gs8YRHxMJiwCmkjKp-QrM21vcYmd0z8YvJkGS98oO26DNl2QqX7wFoPa2GDeL3W3MO0aG90FxTqY6wHDeY-lrnUZPKAf0GrfBjNVbJDFGTmqVePwfDdPyefT40f2Es7en1-z-1moIsqHMBUxVwlnKkImWcFqAWUdQyXSglFWsrqoUloB5angMuYsTaBKhEwTnnAlgEan5Hrr7a359uiGvNWuxKZRHRrvckppLMcmYoPebNHSGucs1nlvdavsOqeQb2Lm-5gje7nT-qLFak_-1RuBqy2gSpevjLfd-OU_ol9KIXl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1114949971</pqid></control><display><type>article</type><title>Comprehensive Molecular Motion Capture for Sphingomyelin by Site-Specific Deuterium Labeling</title><source>MEDLINE</source><source>ACS Publications</source><creator>Matsumori, Nobuaki ; Yasuda, Tomokazu ; Okazaki, Hiroki ; Suzuki, Takashi ; Yamaguchi, Toshiyuki ; Tsuchikawa, Hiroshi ; Doi, Mototsugu ; Oishi, Tohru ; Murata, Michio</creator><creatorcontrib>Matsumori, Nobuaki ; Yasuda, Tomokazu ; Okazaki, Hiroki ; Suzuki, Takashi ; Yamaguchi, Toshiyuki ; Tsuchikawa, Hiroshi ; Doi, Mototsugu ; Oishi, Tohru ; Murata, Michio</creatorcontrib><description>Lipid rafts have attracted much attention because of their significant functional roles in membrane-associated processes. It is thought that sphingomyelin and cholesterol are essential for forming lipid rafts; however, their motion characteristics are not fully understood despite numerous studies. Here we show accurate local motions encompassing an entire sphingomyelin molecule, which were captured by measuring quadrupole splittings for 19 kinds of site-specifically deuterated sphingomyelins (that is, molecular motion capture of sphingomyelin). The quadrupole splitting profiles, which are distinct from those reported from perdeuterated sphingomyelins or simulation studies, reveal that cholesterol enhances the order in the middle parts of the alkyl chains more efficaciously than at the shallow positions. Comparison with dimyristoylphosphocholine bilayers suggests that cholesterol is deeper in sphingomyelin bilayers, which likely explains the so-called umbrella effect. The experiments also demonstrate that (i) the C2′–C3′ bond predominantly takes the gauche conformation, (ii) the net ordering effect of cholesterol in sphingomyelin bilayers is not larger than that in phosphatidylcholine bilayers, (iii) cholesterol has no specific preference for the acyl or sphingosine chain, (iv) the acyl and sphingosine chains seem mismatched by about two methylene lengths, and (v) the motion of the upper regions of sphingomyelin chains is less temperature dependent than that of lower regions probably due to intermolecular hydrogen bond formation among SM molecules. These insights into the atomic-level dynamics of sphingomyelin provide critical clues to understanding the mechanism of raft formation.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi3009399</identifier><identifier>PMID: 23016915</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cholesterol - chemistry ; Deuterium ; Lipid Bilayers - chemistry ; Membrane Microdomains - chemistry ; Molecular Conformation ; Motion ; Nuclear Magnetic Resonance, Biomolecular ; Phosphatidylcholines - chemistry ; Sphingomyelins - chemistry</subject><ispartof>Biochemistry (Easton), 2012-10, Vol.51 (42), p.8363-8370</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-8745a652a3e292b2f70cf40d78b212c2fbd81d0158759452860d67986565a7013</citedby><cites>FETCH-LOGICAL-a315t-8745a652a3e292b2f70cf40d78b212c2fbd81d0158759452860d67986565a7013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi3009399$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi3009399$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23016915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsumori, Nobuaki</creatorcontrib><creatorcontrib>Yasuda, Tomokazu</creatorcontrib><creatorcontrib>Okazaki, Hiroki</creatorcontrib><creatorcontrib>Suzuki, Takashi</creatorcontrib><creatorcontrib>Yamaguchi, Toshiyuki</creatorcontrib><creatorcontrib>Tsuchikawa, Hiroshi</creatorcontrib><creatorcontrib>Doi, Mototsugu</creatorcontrib><creatorcontrib>Oishi, Tohru</creatorcontrib><creatorcontrib>Murata, Michio</creatorcontrib><title>Comprehensive Molecular Motion Capture for Sphingomyelin by Site-Specific Deuterium Labeling</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Lipid rafts have attracted much attention because of their significant functional roles in membrane-associated processes. It is thought that sphingomyelin and cholesterol are essential for forming lipid rafts; however, their motion characteristics are not fully understood despite numerous studies. Here we show accurate local motions encompassing an entire sphingomyelin molecule, which were captured by measuring quadrupole splittings for 19 kinds of site-specifically deuterated sphingomyelins (that is, molecular motion capture of sphingomyelin). The quadrupole splitting profiles, which are distinct from those reported from perdeuterated sphingomyelins or simulation studies, reveal that cholesterol enhances the order in the middle parts of the alkyl chains more efficaciously than at the shallow positions. Comparison with dimyristoylphosphocholine bilayers suggests that cholesterol is deeper in sphingomyelin bilayers, which likely explains the so-called umbrella effect. The experiments also demonstrate that (i) the C2′–C3′ bond predominantly takes the gauche conformation, (ii) the net ordering effect of cholesterol in sphingomyelin bilayers is not larger than that in phosphatidylcholine bilayers, (iii) cholesterol has no specific preference for the acyl or sphingosine chain, (iv) the acyl and sphingosine chains seem mismatched by about two methylene lengths, and (v) the motion of the upper regions of sphingomyelin chains is less temperature dependent than that of lower regions probably due to intermolecular hydrogen bond formation among SM molecules. These insights into the atomic-level dynamics of sphingomyelin provide critical clues to understanding the mechanism of raft formation.</description><subject>Cholesterol - chemistry</subject><subject>Deuterium</subject><subject>Lipid Bilayers - chemistry</subject><subject>Membrane Microdomains - chemistry</subject><subject>Molecular Conformation</subject><subject>Motion</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Sphingomyelins - chemistry</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LxDAQQIMo7vpx8A9IL4IeqpO0aZqj1E9Y8bB6E0raTneztE1NGmH_vV123ZOnmYHHg3mEXFC4pcDoXaEjABlJeUCmlDMIYyn5IZkCQBIymcCEnDi3Gs8YRHxMJiwCmkjKp-QrM21vcYmd0z8YvJkGS98oO26DNl2QqX7wFoPa2GDeL3W3MO0aG90FxTqY6wHDeY-lrnUZPKAf0GrfBjNVbJDFGTmqVePwfDdPyefT40f2Es7en1-z-1moIsqHMBUxVwlnKkImWcFqAWUdQyXSglFWsrqoUloB5angMuYsTaBKhEwTnnAlgEan5Hrr7a359uiGvNWuxKZRHRrvckppLMcmYoPebNHSGucs1nlvdavsOqeQb2Lm-5gje7nT-qLFak_-1RuBqy2gSpevjLfd-OU_ol9KIXl4</recordid><startdate>20121023</startdate><enddate>20121023</enddate><creator>Matsumori, Nobuaki</creator><creator>Yasuda, Tomokazu</creator><creator>Okazaki, Hiroki</creator><creator>Suzuki, Takashi</creator><creator>Yamaguchi, Toshiyuki</creator><creator>Tsuchikawa, Hiroshi</creator><creator>Doi, Mototsugu</creator><creator>Oishi, Tohru</creator><creator>Murata, Michio</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20121023</creationdate><title>Comprehensive Molecular Motion Capture for Sphingomyelin by Site-Specific Deuterium Labeling</title><author>Matsumori, Nobuaki ; Yasuda, Tomokazu ; Okazaki, Hiroki ; Suzuki, Takashi ; Yamaguchi, Toshiyuki ; Tsuchikawa, Hiroshi ; Doi, Mototsugu ; Oishi, Tohru ; Murata, Michio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-8745a652a3e292b2f70cf40d78b212c2fbd81d0158759452860d67986565a7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cholesterol - chemistry</topic><topic>Deuterium</topic><topic>Lipid Bilayers - chemistry</topic><topic>Membrane Microdomains - chemistry</topic><topic>Molecular Conformation</topic><topic>Motion</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Sphingomyelins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumori, Nobuaki</creatorcontrib><creatorcontrib>Yasuda, Tomokazu</creatorcontrib><creatorcontrib>Okazaki, Hiroki</creatorcontrib><creatorcontrib>Suzuki, Takashi</creatorcontrib><creatorcontrib>Yamaguchi, Toshiyuki</creatorcontrib><creatorcontrib>Tsuchikawa, Hiroshi</creatorcontrib><creatorcontrib>Doi, Mototsugu</creatorcontrib><creatorcontrib>Oishi, Tohru</creatorcontrib><creatorcontrib>Murata, Michio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsumori, Nobuaki</au><au>Yasuda, Tomokazu</au><au>Okazaki, Hiroki</au><au>Suzuki, Takashi</au><au>Yamaguchi, Toshiyuki</au><au>Tsuchikawa, Hiroshi</au><au>Doi, Mototsugu</au><au>Oishi, Tohru</au><au>Murata, Michio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Molecular Motion Capture for Sphingomyelin by Site-Specific Deuterium Labeling</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2012-10-23</date><risdate>2012</risdate><volume>51</volume><issue>42</issue><spage>8363</spage><epage>8370</epage><pages>8363-8370</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Lipid rafts have attracted much attention because of their significant functional roles in membrane-associated processes. It is thought that sphingomyelin and cholesterol are essential for forming lipid rafts; however, their motion characteristics are not fully understood despite numerous studies. Here we show accurate local motions encompassing an entire sphingomyelin molecule, which were captured by measuring quadrupole splittings for 19 kinds of site-specifically deuterated sphingomyelins (that is, molecular motion capture of sphingomyelin). The quadrupole splitting profiles, which are distinct from those reported from perdeuterated sphingomyelins or simulation studies, reveal that cholesterol enhances the order in the middle parts of the alkyl chains more efficaciously than at the shallow positions. Comparison with dimyristoylphosphocholine bilayers suggests that cholesterol is deeper in sphingomyelin bilayers, which likely explains the so-called umbrella effect. The experiments also demonstrate that (i) the C2′–C3′ bond predominantly takes the gauche conformation, (ii) the net ordering effect of cholesterol in sphingomyelin bilayers is not larger than that in phosphatidylcholine bilayers, (iii) cholesterol has no specific preference for the acyl or sphingosine chain, (iv) the acyl and sphingosine chains seem mismatched by about two methylene lengths, and (v) the motion of the upper regions of sphingomyelin chains is less temperature dependent than that of lower regions probably due to intermolecular hydrogen bond formation among SM molecules. These insights into the atomic-level dynamics of sphingomyelin provide critical clues to understanding the mechanism of raft formation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23016915</pmid><doi>10.1021/bi3009399</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2012-10, Vol.51 (42), p.8363-8370
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_1114949971
source MEDLINE; ACS Publications
subjects Cholesterol - chemistry
Deuterium
Lipid Bilayers - chemistry
Membrane Microdomains - chemistry
Molecular Conformation
Motion
Nuclear Magnetic Resonance, Biomolecular
Phosphatidylcholines - chemistry
Sphingomyelins - chemistry
title Comprehensive Molecular Motion Capture for Sphingomyelin by Site-Specific Deuterium Labeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Molecular%20Motion%20Capture%20for%20Sphingomyelin%20by%20Site-Specific%20Deuterium%20Labeling&rft.jtitle=Biochemistry%20(Easton)&rft.au=Matsumori,%20Nobuaki&rft.date=2012-10-23&rft.volume=51&rft.issue=42&rft.spage=8363&rft.epage=8370&rft.pages=8363-8370&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi3009399&rft_dat=%3Cproquest_cross%3E1114949971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1114949971&rft_id=info:pmid/23016915&rfr_iscdi=true