Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration

Living systems are forced away from thermodynamic equilibrium by exchange of mass and energy with their environment. In order to model a biochemical reaction network in a non-equilibrium state one requires a mathematical formulation to mimic this forcing. We provide a general formulation to force an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2012-12, Vol.314, p.173-181
Hauptverfasser: Fleming, R.M.T., Thiele, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue
container_start_page 173
container_title Journal of theoretical biology
container_volume 314
creator Fleming, R.M.T.
Thiele, I.
description Living systems are forced away from thermodynamic equilibrium by exchange of mass and energy with their environment. In order to model a biochemical reaction network in a non-equilibrium state one requires a mathematical formulation to mimic this forcing. We provide a general formulation to force an arbitrary large kinetic model in a manner that is still consistent with the existence of a non-equilibrium steady state. We can guarantee the existence of a non-equilibrium steady state assuming only two conditions; that every reaction is mass balanced and that continuous kinetic reaction rate laws never lead to a negative molecule concentration. These conditions can be verified in polynomial time and are flexible enough to permit one to force a system away from equilibrium. With expository biochemical examples we show how reversible, mass balanced perpetual reaction(s), with thermodynamically infeasible kinetic parameters, can be used to perpetually force various kinetic models in a manner consistent with the existence of a steady state. Easily testable existence conditions are foundational for efforts to reliably compute non-equilibrium steady states in genome-scale biochemical kinetic models. ► Forcing a chemical reaction network away from thermodynamic equilibrium. ► Sufficient conditions for the existence of a non-equilibrium steady state. ► Mass conservation, continuous kinetic rate laws and concentration non-negativity. ► Exchange of mass with the environment is not necessary.
doi_str_mv 10.1016/j.jtbi.2012.08.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1114695933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519312004432</els_id><sourcerecordid>1114695933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-51187eb45f13deda56a821167034b07b84dc67b680d03eeea45397f3a00f39603</originalsourceid><addsrcrecordid>eNp9kLtOHTEQhq0oUTgheYEUyGWaXcaXvUk0CAFBIkoDteW1x4oPu2uwvSi8PV4dSJnqL_6LZj5CvjOoGbD2dF_v8-hrDozX0NfA2QeyYzA0Vd9I9pHsADivGjaII_IlpT0ADFK0n8kR54PseNfsSPylU6ImLAnjM1qKE864ZB1f6INfMHuTqE80rc5544tDXYg0_0GKf33KuBikwVFNl7BU-LT6yY_RrzMtnrYvRXTGbd-UbtTZh-Ur-eT0lPDbmx6T-6vLu4uf1e3v65uL89vKSIBc7mZ9h6NsHBMWrW5a3XPG2g6EHKEbe2lN241tDxYEImrZiKFzQgM4MbQgjsmPw-5jDE8rpqxmnwxOk14wrEkxxmQ7NIMQJcoPURNDShGdeox-LhAUA7WxVnu1sVYbawW9KqxL6eRtfx1ntP8q73BL4OwQwPLls8eo0obQoPURTVY2-P_tvwK2OZGp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1114695933</pqid></control><display><type>article</type><title>Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fleming, R.M.T. ; Thiele, I.</creator><creatorcontrib>Fleming, R.M.T. ; Thiele, I.</creatorcontrib><description>Living systems are forced away from thermodynamic equilibrium by exchange of mass and energy with their environment. In order to model a biochemical reaction network in a non-equilibrium state one requires a mathematical formulation to mimic this forcing. We provide a general formulation to force an arbitrary large kinetic model in a manner that is still consistent with the existence of a non-equilibrium steady state. We can guarantee the existence of a non-equilibrium steady state assuming only two conditions; that every reaction is mass balanced and that continuous kinetic reaction rate laws never lead to a negative molecule concentration. These conditions can be verified in polynomial time and are flexible enough to permit one to force a system away from equilibrium. With expository biochemical examples we show how reversible, mass balanced perpetual reaction(s), with thermodynamically infeasible kinetic parameters, can be used to perpetually force various kinetic models in a manner consistent with the existence of a steady state. Easily testable existence conditions are foundational for efforts to reliably compute non-equilibrium steady states in genome-scale biochemical kinetic models. ► Forcing a chemical reaction network away from thermodynamic equilibrium. ► Sufficient conditions for the existence of a non-equilibrium steady state. ► Mass conservation, continuous kinetic rate laws and concentration non-negativity. ► Exchange of mass with the environment is not necessary.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2012.08.021</identifier><identifier>PMID: 22947275</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Anaerobiosis ; Chemical reaction network ; Enzymes - metabolism ; Glycolysis ; Kinetics ; Models, Biological ; Molecular Weight ; Stoichiometric consistency ; Thermodynamic forcing ; Thermodynamics ; Trypanosoma brucei brucei - metabolism</subject><ispartof>Journal of theoretical biology, 2012-12, Vol.314, p.173-181</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-51187eb45f13deda56a821167034b07b84dc67b680d03eeea45397f3a00f39603</citedby><cites>FETCH-LOGICAL-c400t-51187eb45f13deda56a821167034b07b84dc67b680d03eeea45397f3a00f39603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519312004432$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22947275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleming, R.M.T.</creatorcontrib><creatorcontrib>Thiele, I.</creatorcontrib><title>Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>Living systems are forced away from thermodynamic equilibrium by exchange of mass and energy with their environment. In order to model a biochemical reaction network in a non-equilibrium state one requires a mathematical formulation to mimic this forcing. We provide a general formulation to force an arbitrary large kinetic model in a manner that is still consistent with the existence of a non-equilibrium steady state. We can guarantee the existence of a non-equilibrium steady state assuming only two conditions; that every reaction is mass balanced and that continuous kinetic reaction rate laws never lead to a negative molecule concentration. These conditions can be verified in polynomial time and are flexible enough to permit one to force a system away from equilibrium. With expository biochemical examples we show how reversible, mass balanced perpetual reaction(s), with thermodynamically infeasible kinetic parameters, can be used to perpetually force various kinetic models in a manner consistent with the existence of a steady state. Easily testable existence conditions are foundational for efforts to reliably compute non-equilibrium steady states in genome-scale biochemical kinetic models. ► Forcing a chemical reaction network away from thermodynamic equilibrium. ► Sufficient conditions for the existence of a non-equilibrium steady state. ► Mass conservation, continuous kinetic rate laws and concentration non-negativity. ► Exchange of mass with the environment is not necessary.</description><subject>Anaerobiosis</subject><subject>Chemical reaction network</subject><subject>Enzymes - metabolism</subject><subject>Glycolysis</subject><subject>Kinetics</subject><subject>Models, Biological</subject><subject>Molecular Weight</subject><subject>Stoichiometric consistency</subject><subject>Thermodynamic forcing</subject><subject>Thermodynamics</subject><subject>Trypanosoma brucei brucei - metabolism</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOHTEQhq0oUTgheYEUyGWaXcaXvUk0CAFBIkoDteW1x4oPu2uwvSi8PV4dSJnqL_6LZj5CvjOoGbD2dF_v8-hrDozX0NfA2QeyYzA0Vd9I9pHsADivGjaII_IlpT0ADFK0n8kR54PseNfsSPylU6ImLAnjM1qKE864ZB1f6INfMHuTqE80rc5544tDXYg0_0GKf33KuBikwVFNl7BU-LT6yY_RrzMtnrYvRXTGbd-UbtTZh-Ur-eT0lPDbmx6T-6vLu4uf1e3v65uL89vKSIBc7mZ9h6NsHBMWrW5a3XPG2g6EHKEbe2lN241tDxYEImrZiKFzQgM4MbQgjsmPw-5jDE8rpqxmnwxOk14wrEkxxmQ7NIMQJcoPURNDShGdeox-LhAUA7WxVnu1sVYbawW9KqxL6eRtfx1ntP8q73BL4OwQwPLls8eo0obQoPURTVY2-P_tvwK2OZGp</recordid><startdate>20121207</startdate><enddate>20121207</enddate><creator>Fleming, R.M.T.</creator><creator>Thiele, I.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20121207</creationdate><title>Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration</title><author>Fleming, R.M.T. ; Thiele, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-51187eb45f13deda56a821167034b07b84dc67b680d03eeea45397f3a00f39603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anaerobiosis</topic><topic>Chemical reaction network</topic><topic>Enzymes - metabolism</topic><topic>Glycolysis</topic><topic>Kinetics</topic><topic>Models, Biological</topic><topic>Molecular Weight</topic><topic>Stoichiometric consistency</topic><topic>Thermodynamic forcing</topic><topic>Thermodynamics</topic><topic>Trypanosoma brucei brucei - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, R.M.T.</creatorcontrib><creatorcontrib>Thiele, I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, R.M.T.</au><au>Thiele, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2012-12-07</date><risdate>2012</risdate><volume>314</volume><spage>173</spage><epage>181</epage><pages>173-181</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>Living systems are forced away from thermodynamic equilibrium by exchange of mass and energy with their environment. In order to model a biochemical reaction network in a non-equilibrium state one requires a mathematical formulation to mimic this forcing. We provide a general formulation to force an arbitrary large kinetic model in a manner that is still consistent with the existence of a non-equilibrium steady state. We can guarantee the existence of a non-equilibrium steady state assuming only two conditions; that every reaction is mass balanced and that continuous kinetic reaction rate laws never lead to a negative molecule concentration. These conditions can be verified in polynomial time and are flexible enough to permit one to force a system away from equilibrium. With expository biochemical examples we show how reversible, mass balanced perpetual reaction(s), with thermodynamically infeasible kinetic parameters, can be used to perpetually force various kinetic models in a manner consistent with the existence of a steady state. Easily testable existence conditions are foundational for efforts to reliably compute non-equilibrium steady states in genome-scale biochemical kinetic models. ► Forcing a chemical reaction network away from thermodynamic equilibrium. ► Sufficient conditions for the existence of a non-equilibrium steady state. ► Mass conservation, continuous kinetic rate laws and concentration non-negativity. ► Exchange of mass with the environment is not necessary.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22947275</pmid><doi>10.1016/j.jtbi.2012.08.021</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2012-12, Vol.314, p.173-181
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_1114695933
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anaerobiosis
Chemical reaction network
Enzymes - metabolism
Glycolysis
Kinetics
Models, Biological
Molecular Weight
Stoichiometric consistency
Thermodynamic forcing
Thermodynamics
Trypanosoma brucei brucei - metabolism
title Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20conserved%20elementary%20kinetics%20is%20sufficient%20for%20the%20existence%20of%20a%20non-equilibrium%20steady%20state%20concentration&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Fleming,%20R.M.T.&rft.date=2012-12-07&rft.volume=314&rft.spage=173&rft.epage=181&rft.pages=173-181&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2012.08.021&rft_dat=%3Cproquest_cross%3E1114695933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1114695933&rft_id=info:pmid/22947275&rft_els_id=S0022519312004432&rfr_iscdi=true