Alternative statistical distributions for estimating value-at-risk: theory and evidence

A number of applications presume that asset returns are normally distributed, even though they are widely known to be skewed leptokurtic and fat-tailed and excess kurtosis. This leads to the underestimation or overestimation of the true value-at-risk (VaR). This study utilizes a composite trapezoid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of quantitative finance and accounting 2012-10, Vol.39 (3), p.309-331
Hauptverfasser: Lee, Cheng-Few, Su, Jung-Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue 3
container_start_page 309
container_title Review of quantitative finance and accounting
container_volume 39
creator Lee, Cheng-Few
Su, Jung-Bin
description A number of applications presume that asset returns are normally distributed, even though they are widely known to be skewed leptokurtic and fat-tailed and excess kurtosis. This leads to the underestimation or overestimation of the true value-at-risk (VaR). This study utilizes a composite trapezoid rule, a numerical integral method, for estimating quantiles on the skewed generalized t distribution (SGT) which permits returns innovation to flexibly treat skewness, leptokurtosis and fat tails. Daily spot prices of the thirteen stock indices in North America, Europe and Asia provide data for examining the one-day-ahead VaR forecasting performance of the GARCH model with normal, student’s t and SGT distributions. Empirical results indicate that the SGT provides a good fit to the empirical distribution of the log-returns followed by student’s t and normal distributions. Moreover, for all confidence levels, all models tend to underestimate real market risk. Furthermore, the GARCH-based model, with SGT distributional setting, generates the most conservative VaR forecasts followed by student’s t and normal distributions for a long position. Consequently, it appears reasonable to conclude that, from the viewpoint of accuracy, the influence of both skewness and fat-tails effects (SGT) is more important than only the effect of fat-tails (student’s t ) on VaR estimates in stock markets for a long position.
doi_str_mv 10.1007/s11156-011-0256-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1114285970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1114285970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-8fdfe9fedf880cb56db9354640a5e6bb7abfb32979c9d1e508b08fa6cd2f0ab43</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8BL16iSdu0jbdF_IIFL4reQtJO1q7ddk3SZfffO0s9iOBpBuZ5h5mHkHPBrwTnxXUQQsiccSEYT7DZHpCJkEXKClGoQzLhKslYmcv3Y3ISwpJzTEk5IW-zNoLvTGw2QEPEGmJTmZbW2PjGDrHpu0Bd7yngZIVAt6Ab0w7ATGS-CZ83NH5A73fUdDWFTVNDV8EpOXKmDXD2U6fk9f7u5faRzZ8fnm5nc1ZlIo2sdLUD5aB2ZckrK_PaqlRmecaNhNzawlhn00QVqlK1AMlLy0tn8qpOHDc2S6fkcty79v3XgCfqVRMqaFvTQT8EjVqypJSq4Ihe_EGX_YCvt0jxVOU8EYlASoxU5fsQPDi99vi23yGk96r1qFqjar1XrbeYScZMQLZbgP-9-b_QN8nzg7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039602121</pqid></control><display><type>article</type><title>Alternative statistical distributions for estimating value-at-risk: theory and evidence</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Lee, Cheng-Few ; Su, Jung-Bin</creator><creatorcontrib>Lee, Cheng-Few ; Su, Jung-Bin</creatorcontrib><description>A number of applications presume that asset returns are normally distributed, even though they are widely known to be skewed leptokurtic and fat-tailed and excess kurtosis. This leads to the underestimation or overestimation of the true value-at-risk (VaR). This study utilizes a composite trapezoid rule, a numerical integral method, for estimating quantiles on the skewed generalized t distribution (SGT) which permits returns innovation to flexibly treat skewness, leptokurtosis and fat tails. Daily spot prices of the thirteen stock indices in North America, Europe and Asia provide data for examining the one-day-ahead VaR forecasting performance of the GARCH model with normal, student’s t and SGT distributions. Empirical results indicate that the SGT provides a good fit to the empirical distribution of the log-returns followed by student’s t and normal distributions. Moreover, for all confidence levels, all models tend to underestimate real market risk. Furthermore, the GARCH-based model, with SGT distributional setting, generates the most conservative VaR forecasts followed by student’s t and normal distributions for a long position. Consequently, it appears reasonable to conclude that, from the viewpoint of accuracy, the influence of both skewness and fat-tails effects (SGT) is more important than only the effect of fat-tails (student’s t ) on VaR estimates in stock markets for a long position.</description><identifier>ISSN: 0924-865X</identifier><identifier>EISSN: 1573-7179</identifier><identifier>DOI: 10.1007/s11156-011-0256-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accounting/Auditing ; Asia ; Corporate Finance ; Econometrics ; Economic statistics ; Economic theory ; Economics and Finance ; Estimating techniques ; Estimation ; Europe ; Finance ; Financial risks ; Forecasting ; GARCH models ; Kurtosis ; North America ; Operations Research/Decision Theory ; Original Research ; Risk management ; Skewness ; Stochastic models ; Stock exchange ; Stock exchanges ; Stocks ; Students ; Studies ; Volatility</subject><ispartof>Review of quantitative finance and accounting, 2012-10, Vol.39 (3), p.309-331</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-8fdfe9fedf880cb56db9354640a5e6bb7abfb32979c9d1e508b08fa6cd2f0ab43</citedby><cites>FETCH-LOGICAL-c413t-8fdfe9fedf880cb56db9354640a5e6bb7abfb32979c9d1e508b08fa6cd2f0ab43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11156-011-0256-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11156-011-0256-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lee, Cheng-Few</creatorcontrib><creatorcontrib>Su, Jung-Bin</creatorcontrib><title>Alternative statistical distributions for estimating value-at-risk: theory and evidence</title><title>Review of quantitative finance and accounting</title><addtitle>Rev Quant Finan Acc</addtitle><description>A number of applications presume that asset returns are normally distributed, even though they are widely known to be skewed leptokurtic and fat-tailed and excess kurtosis. This leads to the underestimation or overestimation of the true value-at-risk (VaR). This study utilizes a composite trapezoid rule, a numerical integral method, for estimating quantiles on the skewed generalized t distribution (SGT) which permits returns innovation to flexibly treat skewness, leptokurtosis and fat tails. Daily spot prices of the thirteen stock indices in North America, Europe and Asia provide data for examining the one-day-ahead VaR forecasting performance of the GARCH model with normal, student’s t and SGT distributions. Empirical results indicate that the SGT provides a good fit to the empirical distribution of the log-returns followed by student’s t and normal distributions. Moreover, for all confidence levels, all models tend to underestimate real market risk. Furthermore, the GARCH-based model, with SGT distributional setting, generates the most conservative VaR forecasts followed by student’s t and normal distributions for a long position. Consequently, it appears reasonable to conclude that, from the viewpoint of accuracy, the influence of both skewness and fat-tails effects (SGT) is more important than only the effect of fat-tails (student’s t ) on VaR estimates in stock markets for a long position.</description><subject>Accounting/Auditing</subject><subject>Asia</subject><subject>Corporate Finance</subject><subject>Econometrics</subject><subject>Economic statistics</subject><subject>Economic theory</subject><subject>Economics and Finance</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Europe</subject><subject>Finance</subject><subject>Financial risks</subject><subject>Forecasting</subject><subject>GARCH models</subject><subject>Kurtosis</subject><subject>North America</subject><subject>Operations Research/Decision Theory</subject><subject>Original Research</subject><subject>Risk management</subject><subject>Skewness</subject><subject>Stochastic models</subject><subject>Stock exchange</subject><subject>Stock exchanges</subject><subject>Stocks</subject><subject>Students</subject><subject>Studies</subject><subject>Volatility</subject><issn>0924-865X</issn><issn>1573-7179</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8BL16iSdu0jbdF_IIFL4reQtJO1q7ddk3SZfffO0s9iOBpBuZ5h5mHkHPBrwTnxXUQQsiccSEYT7DZHpCJkEXKClGoQzLhKslYmcv3Y3ISwpJzTEk5IW-zNoLvTGw2QEPEGmJTmZbW2PjGDrHpu0Bd7yngZIVAt6Ab0w7ATGS-CZ83NH5A73fUdDWFTVNDV8EpOXKmDXD2U6fk9f7u5faRzZ8fnm5nc1ZlIo2sdLUD5aB2ZckrK_PaqlRmecaNhNzawlhn00QVqlK1AMlLy0tn8qpOHDc2S6fkcty79v3XgCfqVRMqaFvTQT8EjVqypJSq4Ihe_EGX_YCvt0jxVOU8EYlASoxU5fsQPDi99vi23yGk96r1qFqjar1XrbeYScZMQLZbgP-9-b_QN8nzg7s</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Lee, Cheng-Few</creator><creator>Su, Jung-Bin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>87Z</scope><scope>885</scope><scope>8A9</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M1F</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20121001</creationdate><title>Alternative statistical distributions for estimating value-at-risk: theory and evidence</title><author>Lee, Cheng-Few ; Su, Jung-Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-8fdfe9fedf880cb56db9354640a5e6bb7abfb32979c9d1e508b08fa6cd2f0ab43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accounting/Auditing</topic><topic>Asia</topic><topic>Corporate Finance</topic><topic>Econometrics</topic><topic>Economic statistics</topic><topic>Economic theory</topic><topic>Economics and Finance</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Europe</topic><topic>Finance</topic><topic>Financial risks</topic><topic>Forecasting</topic><topic>GARCH models</topic><topic>Kurtosis</topic><topic>North America</topic><topic>Operations Research/Decision Theory</topic><topic>Original Research</topic><topic>Risk management</topic><topic>Skewness</topic><topic>Stochastic models</topic><topic>Stock exchange</topic><topic>Stock exchanges</topic><topic>Stocks</topic><topic>Students</topic><topic>Studies</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Cheng-Few</creatorcontrib><creatorcontrib>Su, Jung-Bin</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting &amp; Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Banking Information Database (Alumni Edition)</collection><collection>Accounting &amp; Tax Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax &amp; Banking Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Accounting, Tax &amp; Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Banking Information Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Review of quantitative finance and accounting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Cheng-Few</au><au>Su, Jung-Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative statistical distributions for estimating value-at-risk: theory and evidence</atitle><jtitle>Review of quantitative finance and accounting</jtitle><stitle>Rev Quant Finan Acc</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>39</volume><issue>3</issue><spage>309</spage><epage>331</epage><pages>309-331</pages><issn>0924-865X</issn><eissn>1573-7179</eissn><abstract>A number of applications presume that asset returns are normally distributed, even though they are widely known to be skewed leptokurtic and fat-tailed and excess kurtosis. This leads to the underestimation or overestimation of the true value-at-risk (VaR). This study utilizes a composite trapezoid rule, a numerical integral method, for estimating quantiles on the skewed generalized t distribution (SGT) which permits returns innovation to flexibly treat skewness, leptokurtosis and fat tails. Daily spot prices of the thirteen stock indices in North America, Europe and Asia provide data for examining the one-day-ahead VaR forecasting performance of the GARCH model with normal, student’s t and SGT distributions. Empirical results indicate that the SGT provides a good fit to the empirical distribution of the log-returns followed by student’s t and normal distributions. Moreover, for all confidence levels, all models tend to underestimate real market risk. Furthermore, the GARCH-based model, with SGT distributional setting, generates the most conservative VaR forecasts followed by student’s t and normal distributions for a long position. Consequently, it appears reasonable to conclude that, from the viewpoint of accuracy, the influence of both skewness and fat-tails effects (SGT) is more important than only the effect of fat-tails (student’s t ) on VaR estimates in stock markets for a long position.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11156-011-0256-x</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-865X
ispartof Review of quantitative finance and accounting, 2012-10, Vol.39 (3), p.309-331
issn 0924-865X
1573-7179
language eng
recordid cdi_proquest_miscellaneous_1114285970
source SpringerLink Journals; Business Source Complete
subjects Accounting/Auditing
Asia
Corporate Finance
Econometrics
Economic statistics
Economic theory
Economics and Finance
Estimating techniques
Estimation
Europe
Finance
Financial risks
Forecasting
GARCH models
Kurtosis
North America
Operations Research/Decision Theory
Original Research
Risk management
Skewness
Stochastic models
Stock exchange
Stock exchanges
Stocks
Students
Studies
Volatility
title Alternative statistical distributions for estimating value-at-risk: theory and evidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20statistical%20distributions%20for%20estimating%20value-at-risk:%20theory%20and%20evidence&rft.jtitle=Review%20of%20quantitative%20finance%20and%20accounting&rft.au=Lee,%20Cheng-Few&rft.date=2012-10-01&rft.volume=39&rft.issue=3&rft.spage=309&rft.epage=331&rft.pages=309-331&rft.issn=0924-865X&rft.eissn=1573-7179&rft_id=info:doi/10.1007/s11156-011-0256-x&rft_dat=%3Cproquest_cross%3E1114285970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039602121&rft_id=info:pmid/&rfr_iscdi=true