On the restricted three body problem with oblate primaries
We present a study of the Lagrangian triangular equilibria in the planar restricted three body problem where the primaries are oblate homogeneous spheroids steadily rotating around their axis of symmetry and whose equatorial planes coincide throughout their motion. Our work differs from previous stu...
Gespeichert in:
Veröffentlicht in: | Astrophysics and space science 2012-10, Vol.341 (2), p.315-322 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 2 |
container_start_page | 315 |
container_title | Astrophysics and space science |
container_volume | 341 |
creator | Arredondo, John A. Guo, Jianguang Stoica, Cristina Tamayo, Claudia |
description | We present a study of the Lagrangian triangular equilibria in the planar restricted three body problem where the primaries are oblate homogeneous spheroids steadily rotating around their axis of symmetry and whose equatorial planes coincide throughout their motion.
Our work differs from previous studies in the fact that the oblateness parameters
J
(1)
and
J
(2)
are not necessarily small but they belong to the largest range where the model is physically valid. In particular, imposing the stability of the primaries’ circular motion, we deduce that
J
(1)
and
J
(2)
belong to a bounded domain. This permits an analytical proof on the existence and uniqueness of a Lagrangian equilibrium (modulo a reflection symmetry). Linear stability is studied numerically. We find that the critical mass ratios
μ
cr
of the primaries forms a smooth surface in the parameter space and observe that
μ
cr
decreases as oblate parameters increase.
We also prove that for non-critical mass ratios, equilibria locations, stability properties, and any elementary periodic solution whose period is not a multiple of 2
π
of the restricted problem persist in the full three-body problem with two oblate bodies and on small mass point. |
doi_str_mv | 10.1007/s10509-012-1085-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1113227238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2763350001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d1f90f97bfcee688e1c24545067e741db225342b8f85275834c8cdff653abf993</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AGzfRm0wySdxJ8QWFbhS6CzOZGztlHppMkf57U8aFCK7ug-9czj2EXDK4YQDqNjKQYCgwThloSdURmTGpODWiWB-TGQAIWghYn5KzGLdpNIVRM3K36rNxg1nAOIbGjVinMSBm1VDvs48wVC122VczbrLUliOmXdOVocF4Tk582Ua8-Klz8vb48Lp4psvV08vifkldLsxIa-YNeKMq7xALrZE5LqSQUChUgtUV5zIXvNJeS66kzoXTrva-kHlZeWPyObme7iY3n7vk03ZNdNi2ZY_DLlrGWM654rlO6NUfdDvsQp_cWQYCVKGF5oliE-XCEGNAb6ef9gmyhzTtlKZNadpDmlYlDZ80MbH9O4bfl_8TfQNK5nYT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1040768482</pqid></control><display><type>article</type><title>On the restricted three body problem with oblate primaries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Arredondo, John A. ; Guo, Jianguang ; Stoica, Cristina ; Tamayo, Claudia</creator><creatorcontrib>Arredondo, John A. ; Guo, Jianguang ; Stoica, Cristina ; Tamayo, Claudia</creatorcontrib><description>We present a study of the Lagrangian triangular equilibria in the planar restricted three body problem where the primaries are oblate homogeneous spheroids steadily rotating around their axis of symmetry and whose equatorial planes coincide throughout their motion.
Our work differs from previous studies in the fact that the oblateness parameters
J
(1)
and
J
(2)
are not necessarily small but they belong to the largest range where the model is physically valid. In particular, imposing the stability of the primaries’ circular motion, we deduce that
J
(1)
and
J
(2)
belong to a bounded domain. This permits an analytical proof on the existence and uniqueness of a Lagrangian equilibrium (modulo a reflection symmetry). Linear stability is studied numerically. We find that the critical mass ratios
μ
cr
of the primaries forms a smooth surface in the parameter space and observe that
μ
cr
decreases as oblate parameters increase.
We also prove that for non-critical mass ratios, equilibria locations, stability properties, and any elementary periodic solution whose period is not a multiple of 2
π
of the restricted problem persist in the full three-body problem with two oblate bodies and on small mass point.</description><identifier>ISSN: 0004-640X</identifier><identifier>EISSN: 1572-946X</identifier><identifier>DOI: 10.1007/s10509-012-1085-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrobiology ; Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Cosmology ; Numerical analysis ; Observations and Techniques ; Orbits ; Original Article ; Physics ; Physics and Astronomy ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>Astrophysics and space science, 2012-10, Vol.341 (2), p.315-322</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d1f90f97bfcee688e1c24545067e741db225342b8f85275834c8cdff653abf993</citedby><cites>FETCH-LOGICAL-c349t-d1f90f97bfcee688e1c24545067e741db225342b8f85275834c8cdff653abf993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10509-012-1085-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10509-012-1085-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Arredondo, John A.</creatorcontrib><creatorcontrib>Guo, Jianguang</creatorcontrib><creatorcontrib>Stoica, Cristina</creatorcontrib><creatorcontrib>Tamayo, Claudia</creatorcontrib><title>On the restricted three body problem with oblate primaries</title><title>Astrophysics and space science</title><addtitle>Astrophys Space Sci</addtitle><description>We present a study of the Lagrangian triangular equilibria in the planar restricted three body problem where the primaries are oblate homogeneous spheroids steadily rotating around their axis of symmetry and whose equatorial planes coincide throughout their motion.
Our work differs from previous studies in the fact that the oblateness parameters
J
(1)
and
J
(2)
are not necessarily small but they belong to the largest range where the model is physically valid. In particular, imposing the stability of the primaries’ circular motion, we deduce that
J
(1)
and
J
(2)
belong to a bounded domain. This permits an analytical proof on the existence and uniqueness of a Lagrangian equilibrium (modulo a reflection symmetry). Linear stability is studied numerically. We find that the critical mass ratios
μ
cr
of the primaries forms a smooth surface in the parameter space and observe that
μ
cr
decreases as oblate parameters increase.
We also prove that for non-critical mass ratios, equilibria locations, stability properties, and any elementary periodic solution whose period is not a multiple of 2
π
of the restricted problem persist in the full three-body problem with two oblate bodies and on small mass point.</description><subject>Astrobiology</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Cosmology</subject><subject>Numerical analysis</subject><subject>Observations and Techniques</subject><subject>Orbits</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>0004-640X</issn><issn>1572-946X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2AGzfRm0wySdxJ8QWFbhS6CzOZGztlHppMkf57U8aFCK7ug-9czj2EXDK4YQDqNjKQYCgwThloSdURmTGpODWiWB-TGQAIWghYn5KzGLdpNIVRM3K36rNxg1nAOIbGjVinMSBm1VDvs48wVC122VczbrLUliOmXdOVocF4Tk582Ua8-Klz8vb48Lp4psvV08vifkldLsxIa-YNeKMq7xALrZE5LqSQUChUgtUV5zIXvNJeS66kzoXTrva-kHlZeWPyObme7iY3n7vk03ZNdNi2ZY_DLlrGWM654rlO6NUfdDvsQp_cWQYCVKGF5oliE-XCEGNAb6ef9gmyhzTtlKZNadpDmlYlDZ80MbH9O4bfl_8TfQNK5nYT</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Arredondo, John A.</creator><creator>Guo, Jianguang</creator><creator>Stoica, Cristina</creator><creator>Tamayo, Claudia</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20121001</creationdate><title>On the restricted three body problem with oblate primaries</title><author>Arredondo, John A. ; Guo, Jianguang ; Stoica, Cristina ; Tamayo, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d1f90f97bfcee688e1c24545067e741db225342b8f85275834c8cdff653abf993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Astrobiology</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Cosmology</topic><topic>Numerical analysis</topic><topic>Observations and Techniques</topic><topic>Orbits</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arredondo, John A.</creatorcontrib><creatorcontrib>Guo, Jianguang</creatorcontrib><creatorcontrib>Stoica, Cristina</creatorcontrib><creatorcontrib>Tamayo, Claudia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Astrophysics and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arredondo, John A.</au><au>Guo, Jianguang</au><au>Stoica, Cristina</au><au>Tamayo, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the restricted three body problem with oblate primaries</atitle><jtitle>Astrophysics and space science</jtitle><stitle>Astrophys Space Sci</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>341</volume><issue>2</issue><spage>315</spage><epage>322</epage><pages>315-322</pages><issn>0004-640X</issn><eissn>1572-946X</eissn><abstract>We present a study of the Lagrangian triangular equilibria in the planar restricted three body problem where the primaries are oblate homogeneous spheroids steadily rotating around their axis of symmetry and whose equatorial planes coincide throughout their motion.
Our work differs from previous studies in the fact that the oblateness parameters
J
(1)
and
J
(2)
are not necessarily small but they belong to the largest range where the model is physically valid. In particular, imposing the stability of the primaries’ circular motion, we deduce that
J
(1)
and
J
(2)
belong to a bounded domain. This permits an analytical proof on the existence and uniqueness of a Lagrangian equilibrium (modulo a reflection symmetry). Linear stability is studied numerically. We find that the critical mass ratios
μ
cr
of the primaries forms a smooth surface in the parameter space and observe that
μ
cr
decreases as oblate parameters increase.
We also prove that for non-critical mass ratios, equilibria locations, stability properties, and any elementary periodic solution whose period is not a multiple of 2
π
of the restricted problem persist in the full three-body problem with two oblate bodies and on small mass point.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10509-012-1085-7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-640X |
ispartof | Astrophysics and space science, 2012-10, Vol.341 (2), p.315-322 |
issn | 0004-640X 1572-946X |
language | eng |
recordid | cdi_proquest_miscellaneous_1113227238 |
source | SpringerLink Journals - AutoHoldings |
subjects | Astrobiology Astronomy Astrophysics Astrophysics and Astroparticles Cosmology Numerical analysis Observations and Techniques Orbits Original Article Physics Physics and Astronomy Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics |
title | On the restricted three body problem with oblate primaries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20restricted%20three%20body%20problem%20with%20oblate%20primaries&rft.jtitle=Astrophysics%20and%20space%20science&rft.au=Arredondo,%20John%20A.&rft.date=2012-10-01&rft.volume=341&rft.issue=2&rft.spage=315&rft.epage=322&rft.pages=315-322&rft.issn=0004-640X&rft.eissn=1572-946X&rft_id=info:doi/10.1007/s10509-012-1085-7&rft_dat=%3Cproquest_cross%3E2763350001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1040768482&rft_id=info:pmid/&rfr_iscdi=true |