On the restricted three body problem with oblate primaries

We present a study of the Lagrangian triangular equilibria in the planar restricted three body problem where the primaries are oblate homogeneous spheroids steadily rotating around their axis of symmetry and whose equatorial planes coincide throughout their motion. Our work differs from previous stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysics and space science 2012-10, Vol.341 (2), p.315-322
Hauptverfasser: Arredondo, John A., Guo, Jianguang, Stoica, Cristina, Tamayo, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue 2
container_start_page 315
container_title Astrophysics and space science
container_volume 341
creator Arredondo, John A.
Guo, Jianguang
Stoica, Cristina
Tamayo, Claudia
description We present a study of the Lagrangian triangular equilibria in the planar restricted three body problem where the primaries are oblate homogeneous spheroids steadily rotating around their axis of symmetry and whose equatorial planes coincide throughout their motion. Our work differs from previous studies in the fact that the oblateness parameters J (1) and J (2) are not necessarily small but they belong to the largest range where the model is physically valid. In particular, imposing the stability of the primaries’ circular motion, we deduce that J (1) and J (2) belong to a bounded domain. This permits an analytical proof on the existence and uniqueness of a Lagrangian equilibrium (modulo a reflection symmetry). Linear stability is studied numerically. We find that the critical mass ratios μ cr of the primaries forms a smooth surface in the parameter space and observe that μ cr decreases as oblate parameters increase. We also prove that for non-critical mass ratios, equilibria locations, stability properties, and any elementary periodic solution whose period is not a multiple of 2 π of the restricted problem persist in the full three-body problem with two oblate bodies and on small mass point.
doi_str_mv 10.1007/s10509-012-1085-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1113227238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2763350001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d1f90f97bfcee688e1c24545067e741db225342b8f85275834c8cdff653abf993</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AGzfRm0wySdxJ8QWFbhS6CzOZGztlHppMkf57U8aFCK7ug-9czj2EXDK4YQDqNjKQYCgwThloSdURmTGpODWiWB-TGQAIWghYn5KzGLdpNIVRM3K36rNxg1nAOIbGjVinMSBm1VDvs48wVC122VczbrLUliOmXdOVocF4Tk582Ua8-Klz8vb48Lp4psvV08vifkldLsxIa-YNeKMq7xALrZE5LqSQUChUgtUV5zIXvNJeS66kzoXTrva-kHlZeWPyObme7iY3n7vk03ZNdNi2ZY_DLlrGWM654rlO6NUfdDvsQp_cWQYCVKGF5oliE-XCEGNAb6ef9gmyhzTtlKZNadpDmlYlDZ80MbH9O4bfl_8TfQNK5nYT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1040768482</pqid></control><display><type>article</type><title>On the restricted three body problem with oblate primaries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Arredondo, John A. ; Guo, Jianguang ; Stoica, Cristina ; Tamayo, Claudia</creator><creatorcontrib>Arredondo, John A. ; Guo, Jianguang ; Stoica, Cristina ; Tamayo, Claudia</creatorcontrib><description>We present a study of the Lagrangian triangular equilibria in the planar restricted three body problem where the primaries are oblate homogeneous spheroids steadily rotating around their axis of symmetry and whose equatorial planes coincide throughout their motion. Our work differs from previous studies in the fact that the oblateness parameters J (1) and J (2) are not necessarily small but they belong to the largest range where the model is physically valid. In particular, imposing the stability of the primaries’ circular motion, we deduce that J (1) and J (2) belong to a bounded domain. This permits an analytical proof on the existence and uniqueness of a Lagrangian equilibrium (modulo a reflection symmetry). Linear stability is studied numerically. We find that the critical mass ratios μ cr of the primaries forms a smooth surface in the parameter space and observe that μ cr decreases as oblate parameters increase. We also prove that for non-critical mass ratios, equilibria locations, stability properties, and any elementary periodic solution whose period is not a multiple of 2 π of the restricted problem persist in the full three-body problem with two oblate bodies and on small mass point.</description><identifier>ISSN: 0004-640X</identifier><identifier>EISSN: 1572-946X</identifier><identifier>DOI: 10.1007/s10509-012-1085-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrobiology ; Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Cosmology ; Numerical analysis ; Observations and Techniques ; Orbits ; Original Article ; Physics ; Physics and Astronomy ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>Astrophysics and space science, 2012-10, Vol.341 (2), p.315-322</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d1f90f97bfcee688e1c24545067e741db225342b8f85275834c8cdff653abf993</citedby><cites>FETCH-LOGICAL-c349t-d1f90f97bfcee688e1c24545067e741db225342b8f85275834c8cdff653abf993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10509-012-1085-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10509-012-1085-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Arredondo, John A.</creatorcontrib><creatorcontrib>Guo, Jianguang</creatorcontrib><creatorcontrib>Stoica, Cristina</creatorcontrib><creatorcontrib>Tamayo, Claudia</creatorcontrib><title>On the restricted three body problem with oblate primaries</title><title>Astrophysics and space science</title><addtitle>Astrophys Space Sci</addtitle><description>We present a study of the Lagrangian triangular equilibria in the planar restricted three body problem where the primaries are oblate homogeneous spheroids steadily rotating around their axis of symmetry and whose equatorial planes coincide throughout their motion. Our work differs from previous studies in the fact that the oblateness parameters J (1) and J (2) are not necessarily small but they belong to the largest range where the model is physically valid. In particular, imposing the stability of the primaries’ circular motion, we deduce that J (1) and J (2) belong to a bounded domain. This permits an analytical proof on the existence and uniqueness of a Lagrangian equilibrium (modulo a reflection symmetry). Linear stability is studied numerically. We find that the critical mass ratios μ cr of the primaries forms a smooth surface in the parameter space and observe that μ cr decreases as oblate parameters increase. We also prove that for non-critical mass ratios, equilibria locations, stability properties, and any elementary periodic solution whose period is not a multiple of 2 π of the restricted problem persist in the full three-body problem with two oblate bodies and on small mass point.</description><subject>Astrobiology</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Cosmology</subject><subject>Numerical analysis</subject><subject>Observations and Techniques</subject><subject>Orbits</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>0004-640X</issn><issn>1572-946X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2AGzfRm0wySdxJ8QWFbhS6CzOZGztlHppMkf57U8aFCK7ug-9czj2EXDK4YQDqNjKQYCgwThloSdURmTGpODWiWB-TGQAIWghYn5KzGLdpNIVRM3K36rNxg1nAOIbGjVinMSBm1VDvs48wVC122VczbrLUliOmXdOVocF4Tk582Ua8-Klz8vb48Lp4psvV08vifkldLsxIa-YNeKMq7xALrZE5LqSQUChUgtUV5zIXvNJeS66kzoXTrva-kHlZeWPyObme7iY3n7vk03ZNdNi2ZY_DLlrGWM654rlO6NUfdDvsQp_cWQYCVKGF5oliE-XCEGNAb6ef9gmyhzTtlKZNadpDmlYlDZ80MbH9O4bfl_8TfQNK5nYT</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Arredondo, John A.</creator><creator>Guo, Jianguang</creator><creator>Stoica, Cristina</creator><creator>Tamayo, Claudia</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20121001</creationdate><title>On the restricted three body problem with oblate primaries</title><author>Arredondo, John A. ; Guo, Jianguang ; Stoica, Cristina ; Tamayo, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d1f90f97bfcee688e1c24545067e741db225342b8f85275834c8cdff653abf993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Astrobiology</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Cosmology</topic><topic>Numerical analysis</topic><topic>Observations and Techniques</topic><topic>Orbits</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arredondo, John A.</creatorcontrib><creatorcontrib>Guo, Jianguang</creatorcontrib><creatorcontrib>Stoica, Cristina</creatorcontrib><creatorcontrib>Tamayo, Claudia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Astrophysics and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arredondo, John A.</au><au>Guo, Jianguang</au><au>Stoica, Cristina</au><au>Tamayo, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the restricted three body problem with oblate primaries</atitle><jtitle>Astrophysics and space science</jtitle><stitle>Astrophys Space Sci</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>341</volume><issue>2</issue><spage>315</spage><epage>322</epage><pages>315-322</pages><issn>0004-640X</issn><eissn>1572-946X</eissn><abstract>We present a study of the Lagrangian triangular equilibria in the planar restricted three body problem where the primaries are oblate homogeneous spheroids steadily rotating around their axis of symmetry and whose equatorial planes coincide throughout their motion. Our work differs from previous studies in the fact that the oblateness parameters J (1) and J (2) are not necessarily small but they belong to the largest range where the model is physically valid. In particular, imposing the stability of the primaries’ circular motion, we deduce that J (1) and J (2) belong to a bounded domain. This permits an analytical proof on the existence and uniqueness of a Lagrangian equilibrium (modulo a reflection symmetry). Linear stability is studied numerically. We find that the critical mass ratios μ cr of the primaries forms a smooth surface in the parameter space and observe that μ cr decreases as oblate parameters increase. We also prove that for non-critical mass ratios, equilibria locations, stability properties, and any elementary periodic solution whose period is not a multiple of 2 π of the restricted problem persist in the full three-body problem with two oblate bodies and on small mass point.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10509-012-1085-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-640X
ispartof Astrophysics and space science, 2012-10, Vol.341 (2), p.315-322
issn 0004-640X
1572-946X
language eng
recordid cdi_proquest_miscellaneous_1113227238
source SpringerLink Journals - AutoHoldings
subjects Astrobiology
Astronomy
Astrophysics
Astrophysics and Astroparticles
Cosmology
Numerical analysis
Observations and Techniques
Orbits
Original Article
Physics
Physics and Astronomy
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
title On the restricted three body problem with oblate primaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20restricted%20three%20body%20problem%20with%20oblate%20primaries&rft.jtitle=Astrophysics%20and%20space%20science&rft.au=Arredondo,%20John%20A.&rft.date=2012-10-01&rft.volume=341&rft.issue=2&rft.spage=315&rft.epage=322&rft.pages=315-322&rft.issn=0004-640X&rft.eissn=1572-946X&rft_id=info:doi/10.1007/s10509-012-1085-7&rft_dat=%3Cproquest_cross%3E2763350001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1040768482&rft_id=info:pmid/&rfr_iscdi=true