Species distribution modelling of marine benthos: a North Sea case study

Species distribution models (SDMs) were applied to predict the distribution of benthic species in the North Sea. An understanding of species distribution patterns is essential to gain insight into ecological processes in marine ecosystems and to guide ecosystem management strategies. Therefore, we c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine ecology. Progress series (Halstenbek) 2011-12, Vol.442, p.71-86
Hauptverfasser: Reiss, Henning, Cunze, Sarah, König, Konstantin, Neumann, Hermann, Kröncke, Ingrid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue
container_start_page 71
container_title Marine ecology. Progress series (Halstenbek)
container_volume 442
creator Reiss, Henning
Cunze, Sarah
König, Konstantin
Neumann, Hermann
Kröncke, Ingrid
description Species distribution models (SDMs) were applied to predict the distribution of benthic species in the North Sea. An understanding of species distribution patterns is essential to gain insight into ecological processes in marine ecosystems and to guide ecosystem management strategies. Therefore, we compared 9 different SDM methods, including GLM, GBM, FDA, SVM, RF, MAXENT, BIOCLIM, GARP and MARS, by using 10 environmental variables to model the distribution of 20 marine benthic species. Most of the models showed good or very good performance in terms of predictive power and accuracy, with highest mean area under the curve (AUC) values of 0.845 and 0.840, obtained for the MAXENT and GBM models, respectively. The poorest performance was shown by the BIOCLIM model, which had a mean AUC of 0.708. Nevertheless, the mapped distribution patterns varied remarkably depending on the model used, with up to 32.5% differences in predictions between models. For species with a narrow distribution range, the models showed a better performance based on the AUC than for species with a broad distribution range, which can most likely be attributed to the restricted spatial scale and the model evaluation procedure. Of the environmental variables, bottom water temperature and depth had the greatest effect on the distribution of 14 benthic species, based on MAXENT results. We examine the potential utility of this strategy for predicting future distribution of benthic species in response to climate change.
doi_str_mv 10.3354/meps09391
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1113223089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24875635</jstor_id><sourcerecordid>24875635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6544cb46489f0112139f505463454b6deda36622745667c160615359723009a43</originalsourceid><addsrcrecordid>eNo90EtLxEAQBOBBFFxXD_4AIUc9RLvTM53MURZfsOBBPYc8JjrLJhOnswf_vZGVPdXloyhKqUuEWyKj73o3CliyeKQWyMgpGmuP1QIwx7RgglN1JrIBQNY5LxS8ja7xTpLWyxR9vZt8GJI-tG679cNnErqkr6IfXFK7YfoKcq5Oumor7uI_l-rj8eF99ZyuX59eVvfrtCG0U8pG66bWrAvbAWKGZDsDRjNpo2tuXVsRc5bl2jDnDTIwGjI2zwjAVpqW6nrfO8bwvXMylb2XZl5VDS7spEREymZc2Jne7GkTg0h0XTlGP6_-KRHKv1fKwyuzvdrbjUwhHmCmi9wwGfoFzg5b6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113223089</pqid></control><display><type>article</type><title>Species distribution modelling of marine benthos: a North Sea case study</title><source>Jstor Complete Legacy</source><source>Inter-Research Science Center Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Reiss, Henning ; Cunze, Sarah ; König, Konstantin ; Neumann, Hermann ; Kröncke, Ingrid</creator><creatorcontrib>Reiss, Henning ; Cunze, Sarah ; König, Konstantin ; Neumann, Hermann ; Kröncke, Ingrid</creatorcontrib><description>Species distribution models (SDMs) were applied to predict the distribution of benthic species in the North Sea. An understanding of species distribution patterns is essential to gain insight into ecological processes in marine ecosystems and to guide ecosystem management strategies. Therefore, we compared 9 different SDM methods, including GLM, GBM, FDA, SVM, RF, MAXENT, BIOCLIM, GARP and MARS, by using 10 environmental variables to model the distribution of 20 marine benthic species. Most of the models showed good or very good performance in terms of predictive power and accuracy, with highest mean area under the curve (AUC) values of 0.845 and 0.840, obtained for the MAXENT and GBM models, respectively. The poorest performance was shown by the BIOCLIM model, which had a mean AUC of 0.708. Nevertheless, the mapped distribution patterns varied remarkably depending on the model used, with up to 32.5% differences in predictions between models. For species with a narrow distribution range, the models showed a better performance based on the AUC than for species with a broad distribution range, which can most likely be attributed to the restricted spatial scale and the model evaluation procedure. Of the environmental variables, bottom water temperature and depth had the greatest effect on the distribution of 14 benthic species, based on MAXENT results. We examine the potential utility of this strategy for predicting future distribution of benthic species in response to climate change.</description><identifier>ISSN: 0171-8630</identifier><identifier>EISSN: 1616-1599</identifier><identifier>DOI: 10.3354/meps09391</identifier><language>eng</language><publisher>Inter-Research</publisher><subject>Aquatic communities ; Benthos ; Ecological modeling ; Ecosystem models ; Global atmospheric research program ; Marine ; Marine ecosystems ; Modeling ; Seas ; Spatial models ; Species</subject><ispartof>Marine ecology. Progress series (Halstenbek), 2011-12, Vol.442, p.71-86</ispartof><rights>Inter-Research 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6544cb46489f0112139f505463454b6deda36622745667c160615359723009a43</citedby><cites>FETCH-LOGICAL-c319t-6544cb46489f0112139f505463454b6deda36622745667c160615359723009a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24875635$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24875635$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3759,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Reiss, Henning</creatorcontrib><creatorcontrib>Cunze, Sarah</creatorcontrib><creatorcontrib>König, Konstantin</creatorcontrib><creatorcontrib>Neumann, Hermann</creatorcontrib><creatorcontrib>Kröncke, Ingrid</creatorcontrib><title>Species distribution modelling of marine benthos: a North Sea case study</title><title>Marine ecology. Progress series (Halstenbek)</title><description>Species distribution models (SDMs) were applied to predict the distribution of benthic species in the North Sea. An understanding of species distribution patterns is essential to gain insight into ecological processes in marine ecosystems and to guide ecosystem management strategies. Therefore, we compared 9 different SDM methods, including GLM, GBM, FDA, SVM, RF, MAXENT, BIOCLIM, GARP and MARS, by using 10 environmental variables to model the distribution of 20 marine benthic species. Most of the models showed good or very good performance in terms of predictive power and accuracy, with highest mean area under the curve (AUC) values of 0.845 and 0.840, obtained for the MAXENT and GBM models, respectively. The poorest performance was shown by the BIOCLIM model, which had a mean AUC of 0.708. Nevertheless, the mapped distribution patterns varied remarkably depending on the model used, with up to 32.5% differences in predictions between models. For species with a narrow distribution range, the models showed a better performance based on the AUC than for species with a broad distribution range, which can most likely be attributed to the restricted spatial scale and the model evaluation procedure. Of the environmental variables, bottom water temperature and depth had the greatest effect on the distribution of 14 benthic species, based on MAXENT results. We examine the potential utility of this strategy for predicting future distribution of benthic species in response to climate change.</description><subject>Aquatic communities</subject><subject>Benthos</subject><subject>Ecological modeling</subject><subject>Ecosystem models</subject><subject>Global atmospheric research program</subject><subject>Marine</subject><subject>Marine ecosystems</subject><subject>Modeling</subject><subject>Seas</subject><subject>Spatial models</subject><subject>Species</subject><issn>0171-8630</issn><issn>1616-1599</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo90EtLxEAQBOBBFFxXD_4AIUc9RLvTM53MURZfsOBBPYc8JjrLJhOnswf_vZGVPdXloyhKqUuEWyKj73o3CliyeKQWyMgpGmuP1QIwx7RgglN1JrIBQNY5LxS8ja7xTpLWyxR9vZt8GJI-tG679cNnErqkr6IfXFK7YfoKcq5Oumor7uI_l-rj8eF99ZyuX59eVvfrtCG0U8pG66bWrAvbAWKGZDsDRjNpo2tuXVsRc5bl2jDnDTIwGjI2zwjAVpqW6nrfO8bwvXMylb2XZl5VDS7spEREymZc2Jne7GkTg0h0XTlGP6_-KRHKv1fKwyuzvdrbjUwhHmCmi9wwGfoFzg5b6Q</recordid><startdate>20111205</startdate><enddate>20111205</enddate><creator>Reiss, Henning</creator><creator>Cunze, Sarah</creator><creator>König, Konstantin</creator><creator>Neumann, Hermann</creator><creator>Kröncke, Ingrid</creator><general>Inter-Research</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>20111205</creationdate><title>Species distribution modelling of marine benthos</title><author>Reiss, Henning ; Cunze, Sarah ; König, Konstantin ; Neumann, Hermann ; Kröncke, Ingrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6544cb46489f0112139f505463454b6deda36622745667c160615359723009a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aquatic communities</topic><topic>Benthos</topic><topic>Ecological modeling</topic><topic>Ecosystem models</topic><topic>Global atmospheric research program</topic><topic>Marine</topic><topic>Marine ecosystems</topic><topic>Modeling</topic><topic>Seas</topic><topic>Spatial models</topic><topic>Species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reiss, Henning</creatorcontrib><creatorcontrib>Cunze, Sarah</creatorcontrib><creatorcontrib>König, Konstantin</creatorcontrib><creatorcontrib>Neumann, Hermann</creatorcontrib><creatorcontrib>Kröncke, Ingrid</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reiss, Henning</au><au>Cunze, Sarah</au><au>König, Konstantin</au><au>Neumann, Hermann</au><au>Kröncke, Ingrid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Species distribution modelling of marine benthos: a North Sea case study</atitle><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle><date>2011-12-05</date><risdate>2011</risdate><volume>442</volume><spage>71</spage><epage>86</epage><pages>71-86</pages><issn>0171-8630</issn><eissn>1616-1599</eissn><abstract>Species distribution models (SDMs) were applied to predict the distribution of benthic species in the North Sea. An understanding of species distribution patterns is essential to gain insight into ecological processes in marine ecosystems and to guide ecosystem management strategies. Therefore, we compared 9 different SDM methods, including GLM, GBM, FDA, SVM, RF, MAXENT, BIOCLIM, GARP and MARS, by using 10 environmental variables to model the distribution of 20 marine benthic species. Most of the models showed good or very good performance in terms of predictive power and accuracy, with highest mean area under the curve (AUC) values of 0.845 and 0.840, obtained for the MAXENT and GBM models, respectively. The poorest performance was shown by the BIOCLIM model, which had a mean AUC of 0.708. Nevertheless, the mapped distribution patterns varied remarkably depending on the model used, with up to 32.5% differences in predictions between models. For species with a narrow distribution range, the models showed a better performance based on the AUC than for species with a broad distribution range, which can most likely be attributed to the restricted spatial scale and the model evaluation procedure. Of the environmental variables, bottom water temperature and depth had the greatest effect on the distribution of 14 benthic species, based on MAXENT results. We examine the potential utility of this strategy for predicting future distribution of benthic species in response to climate change.</abstract><pub>Inter-Research</pub><doi>10.3354/meps09391</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0171-8630
ispartof Marine ecology. Progress series (Halstenbek), 2011-12, Vol.442, p.71-86
issn 0171-8630
1616-1599
language eng
recordid cdi_proquest_miscellaneous_1113223089
source Jstor Complete Legacy; Inter-Research Science Center Journals; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Aquatic communities
Benthos
Ecological modeling
Ecosystem models
Global atmospheric research program
Marine
Marine ecosystems
Modeling
Seas
Spatial models
Species
title Species distribution modelling of marine benthos: a North Sea case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Species%20distribution%20modelling%20of%20marine%20benthos:%20a%20North%20Sea%20case%20study&rft.jtitle=Marine%20ecology.%20Progress%20series%20(Halstenbek)&rft.au=Reiss,%20Henning&rft.date=2011-12-05&rft.volume=442&rft.spage=71&rft.epage=86&rft.pages=71-86&rft.issn=0171-8630&rft.eissn=1616-1599&rft_id=info:doi/10.3354/meps09391&rft_dat=%3Cjstor_proqu%3E24875635%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113223089&rft_id=info:pmid/&rft_jstor_id=24875635&rfr_iscdi=true