The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection
This article is part of a Special Issue “Neuroendocrine-Immune Axis in Health and Disease.” Stress-induced changes in immune function occur in animals across phyla, and these effects are usually immunosuppressive. The function of this immunomodulation remains elusive; however, the existence of speci...
Gespeichert in:
Veröffentlicht in: | Hormones and behavior 2012-08, Vol.62 (3), p.324-330 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 3 |
container_start_page | 324 |
container_title | Hormones and behavior |
container_volume | 62 |
creator | Adamo, Shelley A. |
description | This article is part of a Special Issue “Neuroendocrine-Immune Axis in Health and Disease.” Stress-induced changes in immune function occur in animals across phyla, and these effects are usually immunosuppressive. The function of this immunomodulation remains elusive; however, the existence of specialized receptors on immune cells suggests that it is adaptive. A comparative approach may provide a useful perspective. Although invertebrates have simpler endocrine/neuroendocrine systems and immune systems than vertebrates, they have robust stress responses that include the release of stress hormones/neurohormones. Stress hormones modify immune function in mollusks, insects, and crustaceans. As in vertebrates, the effects of stress hormones/neurohormones on invertebrate immune function are complex, and are not always immunosuppressive. They are context-, stressor-, time- and concentration-dependent. Stress hormone effects on invertebrate immune function may help to re-align resources during fight-or-flight behavior. The data are consistent with the hypothesis that stress hormones induce a reconfiguration of networks at molecular, cellular and physiological levels that allow the animal to maintain optimal immunity as the internal environment changes. This reconfiguration enhances some immune functions while suppressing others. Knowing the molecular details of these shifts will be critical for understanding the adaptive function of stress hormones on immune function.
► Invertebrates have a stress response. ► Invertebrate stress hormones/neurohormones alter immune function. ► Stress hormones reconfigure networks at molecular, cellular and physiological levels. ► Reconfiguration allows maximization for flight-or-fight while maintaining immunity. |
doi_str_mv | 10.1016/j.yhbeh.2012.02.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1113212250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0018506X12000438</els_id><sourcerecordid>2772958531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-a2b62e389abdab38a2d9a1283778ec72a9d73c4e687de8d60bf44f047ad8852d3</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYMo7uzqJxAkIIIvHfOvaSr4sCyuCgu-rOBbSJNbpkOb1KQdWPDDm8yMCj4oHBIu-d3DzT0IvaBkSwmVb_fbh10Huy0jlG1JFmWP0IaStq6kks1jtCGEqqom8tsFukxpn0taC_EUXTDGFRWk3qAf9zvA0Pdgl4RDj5dcpiVCSjgfc_AJcPB4mKbVA-5Xb5eh1EUHiAt00SyQ3uFrj-EQxrU8m_iAZ4hpzq7D4WhgiuwAfsE2eA9Hm2foSW_GBM_P9xX6evvh_uZTdffl4-eb67vKiposlWGdZMBVazpnOq4Mc62hTPGmUWAbZlrXcCtAqsaBcpJ0vRA9EY1xStXM8Sv05uQ7x_B9hbToaUgWxtF4CGvSlFLOKGM1-T9KFFUN56Sgr_5C92GNPn-kUES1QjGRKX6ibAwpRej1HIcpbyhDuuSo9_qYoy45apJFWe56efZeuwnc755fwWXg9RkwyZqxj2W76Q8nhRQ1k5l7f-Ig7_cwQNSppGDBDTGHoF0Y_jnIT5X2vWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080894824</pqid></control><display><type>article</type><title>The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Adamo, Shelley A.</creator><creatorcontrib>Adamo, Shelley A.</creatorcontrib><description>This article is part of a Special Issue “Neuroendocrine-Immune Axis in Health and Disease.” Stress-induced changes in immune function occur in animals across phyla, and these effects are usually immunosuppressive. The function of this immunomodulation remains elusive; however, the existence of specialized receptors on immune cells suggests that it is adaptive. A comparative approach may provide a useful perspective. Although invertebrates have simpler endocrine/neuroendocrine systems and immune systems than vertebrates, they have robust stress responses that include the release of stress hormones/neurohormones. Stress hormones modify immune function in mollusks, insects, and crustaceans. As in vertebrates, the effects of stress hormones/neurohormones on invertebrate immune function are complex, and are not always immunosuppressive. They are context-, stressor-, time- and concentration-dependent. Stress hormone effects on invertebrate immune function may help to re-align resources during fight-or-flight behavior. The data are consistent with the hypothesis that stress hormones induce a reconfiguration of networks at molecular, cellular and physiological levels that allow the animal to maintain optimal immunity as the internal environment changes. This reconfiguration enhances some immune functions while suppressing others. Knowing the molecular details of these shifts will be critical for understanding the adaptive function of stress hormones on immune function.
► Invertebrates have a stress response. ► Invertebrate stress hormones/neurohormones alter immune function. ► Stress hormones reconfigure networks at molecular, cellular and physiological levels. ► Reconfiguration allows maximization for flight-or-fight while maintaining immunity.</description><identifier>ISSN: 0018-506X</identifier><identifier>EISSN: 1095-6867</identifier><identifier>DOI: 10.1016/j.yhbeh.2012.02.012</identifier><identifier>PMID: 22381405</identifier><identifier>CODEN: HOBEAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Animals ; Behavioral psychophysiology ; Biological and medical sciences ; Biological Evolution ; Crustacean ; Crustacean hyperglycemic hormone ; Fundamental and applied biological sciences. Psychology ; Hemocyte ; Hormones ; Hormones and behavior ; Immune system ; Immune System - physiology ; Insect ; Invertebrata ; Invertebrates ; Invertebrates - immunology ; Mollusca ; Mollusk ; Neurosecretory Systems - immunology ; Norepinephrine ; Octopamine ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychoneuroimmunology ; Serotonin ; Stress hormone ; Stress response ; Stress, Physiological - immunology</subject><ispartof>Hormones and behavior, 2012-08, Vol.62 (3), p.324-330</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-a2b62e389abdab38a2d9a1283778ec72a9d73c4e687de8d60bf44f047ad8852d3</citedby><cites>FETCH-LOGICAL-c450t-a2b62e389abdab38a2d9a1283778ec72a9d73c4e687de8d60bf44f047ad8852d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0018506X12000438$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26464526$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22381405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adamo, Shelley A.</creatorcontrib><title>The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection</title><title>Hormones and behavior</title><addtitle>Horm Behav</addtitle><description>This article is part of a Special Issue “Neuroendocrine-Immune Axis in Health and Disease.” Stress-induced changes in immune function occur in animals across phyla, and these effects are usually immunosuppressive. The function of this immunomodulation remains elusive; however, the existence of specialized receptors on immune cells suggests that it is adaptive. A comparative approach may provide a useful perspective. Although invertebrates have simpler endocrine/neuroendocrine systems and immune systems than vertebrates, they have robust stress responses that include the release of stress hormones/neurohormones. Stress hormones modify immune function in mollusks, insects, and crustaceans. As in vertebrates, the effects of stress hormones/neurohormones on invertebrate immune function are complex, and are not always immunosuppressive. They are context-, stressor-, time- and concentration-dependent. Stress hormone effects on invertebrate immune function may help to re-align resources during fight-or-flight behavior. The data are consistent with the hypothesis that stress hormones induce a reconfiguration of networks at molecular, cellular and physiological levels that allow the animal to maintain optimal immunity as the internal environment changes. This reconfiguration enhances some immune functions while suppressing others. Knowing the molecular details of these shifts will be critical for understanding the adaptive function of stress hormones on immune function.
► Invertebrates have a stress response. ► Invertebrate stress hormones/neurohormones alter immune function. ► Stress hormones reconfigure networks at molecular, cellular and physiological levels. ► Reconfiguration allows maximization for flight-or-fight while maintaining immunity.</description><subject>Animals</subject><subject>Behavioral psychophysiology</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Crustacean</subject><subject>Crustacean hyperglycemic hormone</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hemocyte</subject><subject>Hormones</subject><subject>Hormones and behavior</subject><subject>Immune system</subject><subject>Immune System - physiology</subject><subject>Insect</subject><subject>Invertebrata</subject><subject>Invertebrates</subject><subject>Invertebrates - immunology</subject><subject>Mollusca</subject><subject>Mollusk</subject><subject>Neurosecretory Systems - immunology</subject><subject>Norepinephrine</subject><subject>Octopamine</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychoneuroimmunology</subject><subject>Serotonin</subject><subject>Stress hormone</subject><subject>Stress response</subject><subject>Stress, Physiological - immunology</subject><issn>0018-506X</issn><issn>1095-6867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV-L1DAUxYMo7uzqJxAkIIIvHfOvaSr4sCyuCgu-rOBbSJNbpkOb1KQdWPDDm8yMCj4oHBIu-d3DzT0IvaBkSwmVb_fbh10Huy0jlG1JFmWP0IaStq6kks1jtCGEqqom8tsFukxpn0taC_EUXTDGFRWk3qAf9zvA0Pdgl4RDj5dcpiVCSjgfc_AJcPB4mKbVA-5Xb5eh1EUHiAt00SyQ3uFrj-EQxrU8m_iAZ4hpzq7D4WhgiuwAfsE2eA9Hm2foSW_GBM_P9xX6evvh_uZTdffl4-eb67vKiposlWGdZMBVazpnOq4Mc62hTPGmUWAbZlrXcCtAqsaBcpJ0vRA9EY1xStXM8Sv05uQ7x_B9hbToaUgWxtF4CGvSlFLOKGM1-T9KFFUN56Sgr_5C92GNPn-kUES1QjGRKX6ibAwpRej1HIcpbyhDuuSo9_qYoy45apJFWe56efZeuwnc755fwWXg9RkwyZqxj2W76Q8nhRQ1k5l7f-Ig7_cwQNSppGDBDTGHoF0Y_jnIT5X2vWs</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Adamo, Shelley A.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope></search><sort><creationdate>20120801</creationdate><title>The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection</title><author>Adamo, Shelley A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-a2b62e389abdab38a2d9a1283778ec72a9d73c4e687de8d60bf44f047ad8852d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Behavioral psychophysiology</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Crustacean</topic><topic>Crustacean hyperglycemic hormone</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hemocyte</topic><topic>Hormones</topic><topic>Hormones and behavior</topic><topic>Immune system</topic><topic>Immune System - physiology</topic><topic>Insect</topic><topic>Invertebrata</topic><topic>Invertebrates</topic><topic>Invertebrates - immunology</topic><topic>Mollusca</topic><topic>Mollusk</topic><topic>Neurosecretory Systems - immunology</topic><topic>Norepinephrine</topic><topic>Octopamine</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychoneuroimmunology</topic><topic>Serotonin</topic><topic>Stress hormone</topic><topic>Stress response</topic><topic>Stress, Physiological - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adamo, Shelley A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Hormones and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adamo, Shelley A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection</atitle><jtitle>Hormones and behavior</jtitle><addtitle>Horm Behav</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>62</volume><issue>3</issue><spage>324</spage><epage>330</epage><pages>324-330</pages><issn>0018-506X</issn><eissn>1095-6867</eissn><coden>HOBEAO</coden><abstract>This article is part of a Special Issue “Neuroendocrine-Immune Axis in Health and Disease.” Stress-induced changes in immune function occur in animals across phyla, and these effects are usually immunosuppressive. The function of this immunomodulation remains elusive; however, the existence of specialized receptors on immune cells suggests that it is adaptive. A comparative approach may provide a useful perspective. Although invertebrates have simpler endocrine/neuroendocrine systems and immune systems than vertebrates, they have robust stress responses that include the release of stress hormones/neurohormones. Stress hormones modify immune function in mollusks, insects, and crustaceans. As in vertebrates, the effects of stress hormones/neurohormones on invertebrate immune function are complex, and are not always immunosuppressive. They are context-, stressor-, time- and concentration-dependent. Stress hormone effects on invertebrate immune function may help to re-align resources during fight-or-flight behavior. The data are consistent with the hypothesis that stress hormones induce a reconfiguration of networks at molecular, cellular and physiological levels that allow the animal to maintain optimal immunity as the internal environment changes. This reconfiguration enhances some immune functions while suppressing others. Knowing the molecular details of these shifts will be critical for understanding the adaptive function of stress hormones on immune function.
► Invertebrates have a stress response. ► Invertebrate stress hormones/neurohormones alter immune function. ► Stress hormones reconfigure networks at molecular, cellular and physiological levels. ► Reconfiguration allows maximization for flight-or-fight while maintaining immunity.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>22381405</pmid><doi>10.1016/j.yhbeh.2012.02.012</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-506X |
ispartof | Hormones and behavior, 2012-08, Vol.62 (3), p.324-330 |
issn | 0018-506X 1095-6867 |
language | eng |
recordid | cdi_proquest_miscellaneous_1113212250 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Behavioral psychophysiology Biological and medical sciences Biological Evolution Crustacean Crustacean hyperglycemic hormone Fundamental and applied biological sciences. Psychology Hemocyte Hormones Hormones and behavior Immune system Immune System - physiology Insect Invertebrata Invertebrates Invertebrates - immunology Mollusca Mollusk Neurosecretory Systems - immunology Norepinephrine Octopamine Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychoneuroimmunology Serotonin Stress hormone Stress response Stress, Physiological - immunology |
title | The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20the%20stress%20response%20on%20immune%20function%20in%20invertebrates:%20An%20evolutionary%20perspective%20on%20an%20ancient%20connection&rft.jtitle=Hormones%20and%20behavior&rft.au=Adamo,%20Shelley%20A.&rft.date=2012-08-01&rft.volume=62&rft.issue=3&rft.spage=324&rft.epage=330&rft.pages=324-330&rft.issn=0018-506X&rft.eissn=1095-6867&rft.coden=HOBEAO&rft_id=info:doi/10.1016/j.yhbeh.2012.02.012&rft_dat=%3Cproquest_cross%3E2772958531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080894824&rft_id=info:pmid/22381405&rft_els_id=S0018506X12000438&rfr_iscdi=true |