Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles - Part II. Physicochemical characterisation of spray-dried materials
Objectives In this work we investigated the residual organic solvent content and physicochemical properties of spray‐dried chlorothiazide sodium (CTZNa) and potassium (CTZK) salts. Methods The powders were characterised by thermal, X‐ray diffraction, infrared and dynamic vapour sorption (DVS) anal...
Gespeichert in:
Veröffentlicht in: | Journal of pharmacy and pharmacology 2012-11, Vol.64 (11), p.1583-1591 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1591 |
---|---|
container_issue | 11 |
container_start_page | 1583 |
container_title | Journal of pharmacy and pharmacology |
container_volume | 64 |
creator | Paluch, Krzysztof J. Tajber, Lidia Amaro, Maria I. Corrigan, Owen I. Healy, Anne Marie |
description | Objectives In this work we investigated the residual organic solvent content and physicochemical properties of spray‐dried chlorothiazide sodium (CTZNa) and potassium (CTZK) salts.
Methods The powders were characterised by thermal, X‐ray diffraction, infrared and dynamic vapour sorption (DVS) analyses. Solvent levels were investigated by Karl–Fischer titration and gas chromatography.
Key findings Spray‐drying from water, methanol (MeOH) and mixes of MeOH and butyl acetate (BA) resulted in amorphous microparticles. The glass transition temperatures of CTZNa and CTZK were ∼192 and ∼159°C, respectively. These materials retained their amorphous nature when stored at 25°C in dry conditions for at least 6 months with no chemical decomposition observed. DVS determined the critical relative humidity of recrystallisation of CTZNa and CTZK to be 57% RH and 58% RH, respectively. The inlet temperature dependant oxidation of MeOH to formaldehyde was observed; the formaldehyde was seen to deposit within the amorphous matrix of spray‐dried product. Spray‐drying in the open blowing mode coupled with secondary drying resulted in a three‐fold reduction in residual BA (below pharmacopoeial permitted daily exposure limit) compared to spray‐drying in the closed mode.
Conclusions Experiments showed that recirculation of recovered drying gas increases the risk of deposition of residual solvents in the spray‐dried product. |
doi_str_mv | 10.1111/j.2042-7158.2012.01543.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1111864269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1111864269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4583-5e0e00f8c4e6f1569c289f7645c7a46021ff3e71c5e9ee53432e87b48670b16c3</originalsourceid><addsrcrecordid>eNqNkc9uEzEQxq0K1Kalr4B85LKL_3tzQUIVTVNFkAOoUi-W48wqDrvZxd6U5LF4Q-xuyaEnfJmR5vt-49GHEKakpOl93JaMCFZoKqvUUVYSKgUvD2dochq8QRNCGCu41PwCXca4JYRopdQ5umCcyIoIOUF_5m1v3YC7GvehcxAjfrLB21UDEXc7PGwAt96FroXgB--w3a1xvzlG7zq3gTSyTXb2EAafLTWOfbDHYh08rEdrb9PMZWCBl6nH83mJl68YbmND-kjaEu3g0-bXJJtntonv0Ns6Fbh-qVfox-2X7zd3xeLbbH7zeVE4ISteSCBASF05AaqmUk0dq6a1VkI6bYUijNY1B02dhCmA5IIzqPRKVEqTFVWOX6EPIzdd92sPcTCtjw6axu6g20eTg6iUYGqapNUoTcfGGKA2ffCtDUdDybPObE3OxeRcTA7MPAdmDsn6_mXLftXC-mT8l1ASfBoFv30Dx_8Gm_vl3TK3CVCMAB8HOJwANvw0SnMtzcPXmRGzx1vxQBZG8r-gMLdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1111864269</pqid></control><display><type>article</type><title>Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles - Part II. Physicochemical characterisation of spray-dried materials</title><source>MEDLINE</source><source>Wiley Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Paluch, Krzysztof J. ; Tajber, Lidia ; Amaro, Maria I. ; Corrigan, Owen I. ; Healy, Anne Marie</creator><creatorcontrib>Paluch, Krzysztof J. ; Tajber, Lidia ; Amaro, Maria I. ; Corrigan, Owen I. ; Healy, Anne Marie</creatorcontrib><description>Objectives In this work we investigated the residual organic solvent content and physicochemical properties of spray‐dried chlorothiazide sodium (CTZNa) and potassium (CTZK) salts.
Methods The powders were characterised by thermal, X‐ray diffraction, infrared and dynamic vapour sorption (DVS) analyses. Solvent levels were investigated by Karl–Fischer titration and gas chromatography.
Key findings Spray‐drying from water, methanol (MeOH) and mixes of MeOH and butyl acetate (BA) resulted in amorphous microparticles. The glass transition temperatures of CTZNa and CTZK were ∼192 and ∼159°C, respectively. These materials retained their amorphous nature when stored at 25°C in dry conditions for at least 6 months with no chemical decomposition observed. DVS determined the critical relative humidity of recrystallisation of CTZNa and CTZK to be 57% RH and 58% RH, respectively. The inlet temperature dependant oxidation of MeOH to formaldehyde was observed; the formaldehyde was seen to deposit within the amorphous matrix of spray‐dried product. Spray‐drying in the open blowing mode coupled with secondary drying resulted in a three‐fold reduction in residual BA (below pharmacopoeial permitted daily exposure limit) compared to spray‐drying in the closed mode.
Conclusions Experiments showed that recirculation of recovered drying gas increases the risk of deposition of residual solvents in the spray‐dried product.</description><identifier>ISSN: 0022-3573</identifier><identifier>EISSN: 2042-7158</identifier><identifier>DOI: 10.1111/j.2042-7158.2012.01543.x</identifier><identifier>PMID: 23058045</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>amorphous ; Chemistry, Pharmaceutical - methods ; Chlorothiazide - chemistry ; Chromatography, Gas ; critical relative humidity of recrystallisation ; Drug Stability ; Drug Storage ; Organic Chemicals - chemistry ; oxidation of organic solvent ; Oxidation-Reduction ; permitted daily exposure ; Powders ; residual solvent level ; Solvents - chemistry ; spray-drying ; Temperature ; Transition Temperature ; X-Ray Diffraction</subject><ispartof>Journal of pharmacy and pharmacology, 2012-11, Vol.64 (11), p.1583-1591</ispartof><rights>2012 The Authors. JPP © 2012 Royal Pharmaceutical Society</rights><rights>2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4583-5e0e00f8c4e6f1569c289f7645c7a46021ff3e71c5e9ee53432e87b48670b16c3</citedby><cites>FETCH-LOGICAL-c4583-5e0e00f8c4e6f1569c289f7645c7a46021ff3e71c5e9ee53432e87b48670b16c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.2042-7158.2012.01543.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.2042-7158.2012.01543.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23058045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paluch, Krzysztof J.</creatorcontrib><creatorcontrib>Tajber, Lidia</creatorcontrib><creatorcontrib>Amaro, Maria I.</creatorcontrib><creatorcontrib>Corrigan, Owen I.</creatorcontrib><creatorcontrib>Healy, Anne Marie</creatorcontrib><title>Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles - Part II. Physicochemical characterisation of spray-dried materials</title><title>Journal of pharmacy and pharmacology</title><addtitle>J Pharm Pharmacol</addtitle><description>Objectives In this work we investigated the residual organic solvent content and physicochemical properties of spray‐dried chlorothiazide sodium (CTZNa) and potassium (CTZK) salts.
Methods The powders were characterised by thermal, X‐ray diffraction, infrared and dynamic vapour sorption (DVS) analyses. Solvent levels were investigated by Karl–Fischer titration and gas chromatography.
Key findings Spray‐drying from water, methanol (MeOH) and mixes of MeOH and butyl acetate (BA) resulted in amorphous microparticles. The glass transition temperatures of CTZNa and CTZK were ∼192 and ∼159°C, respectively. These materials retained their amorphous nature when stored at 25°C in dry conditions for at least 6 months with no chemical decomposition observed. DVS determined the critical relative humidity of recrystallisation of CTZNa and CTZK to be 57% RH and 58% RH, respectively. The inlet temperature dependant oxidation of MeOH to formaldehyde was observed; the formaldehyde was seen to deposit within the amorphous matrix of spray‐dried product. Spray‐drying in the open blowing mode coupled with secondary drying resulted in a three‐fold reduction in residual BA (below pharmacopoeial permitted daily exposure limit) compared to spray‐drying in the closed mode.
Conclusions Experiments showed that recirculation of recovered drying gas increases the risk of deposition of residual solvents in the spray‐dried product.</description><subject>amorphous</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Chlorothiazide - chemistry</subject><subject>Chromatography, Gas</subject><subject>critical relative humidity of recrystallisation</subject><subject>Drug Stability</subject><subject>Drug Storage</subject><subject>Organic Chemicals - chemistry</subject><subject>oxidation of organic solvent</subject><subject>Oxidation-Reduction</subject><subject>permitted daily exposure</subject><subject>Powders</subject><subject>residual solvent level</subject><subject>Solvents - chemistry</subject><subject>spray-drying</subject><subject>Temperature</subject><subject>Transition Temperature</subject><subject>X-Ray Diffraction</subject><issn>0022-3573</issn><issn>2042-7158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9uEzEQxq0K1Kalr4B85LKL_3tzQUIVTVNFkAOoUi-W48wqDrvZxd6U5LF4Q-xuyaEnfJmR5vt-49GHEKakpOl93JaMCFZoKqvUUVYSKgUvD2dochq8QRNCGCu41PwCXca4JYRopdQ5umCcyIoIOUF_5m1v3YC7GvehcxAjfrLB21UDEXc7PGwAt96FroXgB--w3a1xvzlG7zq3gTSyTXb2EAafLTWOfbDHYh08rEdrb9PMZWCBl6nH83mJl68YbmND-kjaEu3g0-bXJJtntonv0Ns6Fbh-qVfox-2X7zd3xeLbbH7zeVE4ISteSCBASF05AaqmUk0dq6a1VkI6bYUijNY1B02dhCmA5IIzqPRKVEqTFVWOX6EPIzdd92sPcTCtjw6axu6g20eTg6iUYGqapNUoTcfGGKA2ffCtDUdDybPObE3OxeRcTA7MPAdmDsn6_mXLftXC-mT8l1ASfBoFv30Dx_8Gm_vl3TK3CVCMAB8HOJwANvw0SnMtzcPXmRGzx1vxQBZG8r-gMLdA</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Paluch, Krzysztof J.</creator><creator>Tajber, Lidia</creator><creator>Amaro, Maria I.</creator><creator>Corrigan, Owen I.</creator><creator>Healy, Anne Marie</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201211</creationdate><title>Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles - Part II. Physicochemical characterisation of spray-dried materials</title><author>Paluch, Krzysztof J. ; Tajber, Lidia ; Amaro, Maria I. ; Corrigan, Owen I. ; Healy, Anne Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4583-5e0e00f8c4e6f1569c289f7645c7a46021ff3e71c5e9ee53432e87b48670b16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>amorphous</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Chlorothiazide - chemistry</topic><topic>Chromatography, Gas</topic><topic>critical relative humidity of recrystallisation</topic><topic>Drug Stability</topic><topic>Drug Storage</topic><topic>Organic Chemicals - chemistry</topic><topic>oxidation of organic solvent</topic><topic>Oxidation-Reduction</topic><topic>permitted daily exposure</topic><topic>Powders</topic><topic>residual solvent level</topic><topic>Solvents - chemistry</topic><topic>spray-drying</topic><topic>Temperature</topic><topic>Transition Temperature</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paluch, Krzysztof J.</creatorcontrib><creatorcontrib>Tajber, Lidia</creatorcontrib><creatorcontrib>Amaro, Maria I.</creatorcontrib><creatorcontrib>Corrigan, Owen I.</creatorcontrib><creatorcontrib>Healy, Anne Marie</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmacy and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paluch, Krzysztof J.</au><au>Tajber, Lidia</au><au>Amaro, Maria I.</au><au>Corrigan, Owen I.</au><au>Healy, Anne Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles - Part II. Physicochemical characterisation of spray-dried materials</atitle><jtitle>Journal of pharmacy and pharmacology</jtitle><addtitle>J Pharm Pharmacol</addtitle><date>2012-11</date><risdate>2012</risdate><volume>64</volume><issue>11</issue><spage>1583</spage><epage>1591</epage><pages>1583-1591</pages><issn>0022-3573</issn><eissn>2042-7158</eissn><abstract>Objectives In this work we investigated the residual organic solvent content and physicochemical properties of spray‐dried chlorothiazide sodium (CTZNa) and potassium (CTZK) salts.
Methods The powders were characterised by thermal, X‐ray diffraction, infrared and dynamic vapour sorption (DVS) analyses. Solvent levels were investigated by Karl–Fischer titration and gas chromatography.
Key findings Spray‐drying from water, methanol (MeOH) and mixes of MeOH and butyl acetate (BA) resulted in amorphous microparticles. The glass transition temperatures of CTZNa and CTZK were ∼192 and ∼159°C, respectively. These materials retained their amorphous nature when stored at 25°C in dry conditions for at least 6 months with no chemical decomposition observed. DVS determined the critical relative humidity of recrystallisation of CTZNa and CTZK to be 57% RH and 58% RH, respectively. The inlet temperature dependant oxidation of MeOH to formaldehyde was observed; the formaldehyde was seen to deposit within the amorphous matrix of spray‐dried product. Spray‐drying in the open blowing mode coupled with secondary drying resulted in a three‐fold reduction in residual BA (below pharmacopoeial permitted daily exposure limit) compared to spray‐drying in the closed mode.
Conclusions Experiments showed that recirculation of recovered drying gas increases the risk of deposition of residual solvents in the spray‐dried product.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>23058045</pmid><doi>10.1111/j.2042-7158.2012.01543.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3573 |
ispartof | Journal of pharmacy and pharmacology, 2012-11, Vol.64 (11), p.1583-1591 |
issn | 0022-3573 2042-7158 |
language | eng |
recordid | cdi_proquest_miscellaneous_1111864269 |
source | MEDLINE; Wiley Journals; Oxford University Press Journals All Titles (1996-Current) |
subjects | amorphous Chemistry, Pharmaceutical - methods Chlorothiazide - chemistry Chromatography, Gas critical relative humidity of recrystallisation Drug Stability Drug Storage Organic Chemicals - chemistry oxidation of organic solvent Oxidation-Reduction permitted daily exposure Powders residual solvent level Solvents - chemistry spray-drying Temperature Transition Temperature X-Ray Diffraction |
title | Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles - Part II. Physicochemical characterisation of spray-dried materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20process%20variables%20on%20the%20micromeritic%20and%20physicochemical%20properties%20of%20spray-dried%20microparticles%20-%20Part%20II.%20Physicochemical%20characterisation%20of%20spray-dried%20materials&rft.jtitle=Journal%20of%20pharmacy%20and%20pharmacology&rft.au=Paluch,%20Krzysztof%20J.&rft.date=2012-11&rft.volume=64&rft.issue=11&rft.spage=1583&rft.epage=1591&rft.pages=1583-1591&rft.issn=0022-3573&rft.eissn=2042-7158&rft_id=info:doi/10.1111/j.2042-7158.2012.01543.x&rft_dat=%3Cproquest_cross%3E1111864269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1111864269&rft_id=info:pmid/23058045&rfr_iscdi=true |