Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles - Part II. Physicochemical characterisation of spray-dried materials

Objectives  In this work we investigated the residual organic solvent content and physicochemical properties of spray‐dried chlorothiazide sodium (CTZNa) and potassium (CTZK) salts. Methods  The powders were characterised by thermal, X‐ray diffraction, infrared and dynamic vapour sorption (DVS) anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmacy and pharmacology 2012-11, Vol.64 (11), p.1583-1591
Hauptverfasser: Paluch, Krzysztof J., Tajber, Lidia, Amaro, Maria I., Corrigan, Owen I., Healy, Anne Marie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1591
container_issue 11
container_start_page 1583
container_title Journal of pharmacy and pharmacology
container_volume 64
creator Paluch, Krzysztof J.
Tajber, Lidia
Amaro, Maria I.
Corrigan, Owen I.
Healy, Anne Marie
description Objectives  In this work we investigated the residual organic solvent content and physicochemical properties of spray‐dried chlorothiazide sodium (CTZNa) and potassium (CTZK) salts. Methods  The powders were characterised by thermal, X‐ray diffraction, infrared and dynamic vapour sorption (DVS) analyses. Solvent levels were investigated by Karl–Fischer titration and gas chromatography. Key findings  Spray‐drying from water, methanol (MeOH) and mixes of MeOH and butyl acetate (BA) resulted in amorphous microparticles. The glass transition temperatures of CTZNa and CTZK were ∼192 and ∼159°C, respectively. These materials retained their amorphous nature when stored at 25°C in dry conditions for at least 6 months with no chemical decomposition observed. DVS determined the critical relative humidity of recrystallisation of CTZNa and CTZK to be 57% RH and 58% RH, respectively. The inlet temperature dependant oxidation of MeOH to formaldehyde was observed; the formaldehyde was seen to deposit within the amorphous matrix of spray‐dried product. Spray‐drying in the open blowing mode coupled with secondary drying resulted in a three‐fold reduction in residual BA (below pharmacopoeial permitted daily exposure limit) compared to spray‐drying in the closed mode. Conclusions  Experiments showed that recirculation of recovered drying gas increases the risk of deposition of residual solvents in the spray‐dried product.
doi_str_mv 10.1111/j.2042-7158.2012.01543.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1111864269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1111864269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4583-5e0e00f8c4e6f1569c289f7645c7a46021ff3e71c5e9ee53432e87b48670b16c3</originalsourceid><addsrcrecordid>eNqNkc9uEzEQxq0K1Kalr4B85LKL_3tzQUIVTVNFkAOoUi-W48wqDrvZxd6U5LF4Q-xuyaEnfJmR5vt-49GHEKakpOl93JaMCFZoKqvUUVYSKgUvD2dochq8QRNCGCu41PwCXca4JYRopdQ5umCcyIoIOUF_5m1v3YC7GvehcxAjfrLB21UDEXc7PGwAt96FroXgB--w3a1xvzlG7zq3gTSyTXb2EAafLTWOfbDHYh08rEdrb9PMZWCBl6nH83mJl68YbmND-kjaEu3g0-bXJJtntonv0Ns6Fbh-qVfox-2X7zd3xeLbbH7zeVE4ISteSCBASF05AaqmUk0dq6a1VkI6bYUijNY1B02dhCmA5IIzqPRKVEqTFVWOX6EPIzdd92sPcTCtjw6axu6g20eTg6iUYGqapNUoTcfGGKA2ffCtDUdDybPObE3OxeRcTA7MPAdmDsn6_mXLftXC-mT8l1ASfBoFv30Dx_8Gm_vl3TK3CVCMAB8HOJwANvw0SnMtzcPXmRGzx1vxQBZG8r-gMLdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1111864269</pqid></control><display><type>article</type><title>Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles - Part II. Physicochemical characterisation of spray-dried materials</title><source>MEDLINE</source><source>Wiley Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Paluch, Krzysztof J. ; Tajber, Lidia ; Amaro, Maria I. ; Corrigan, Owen I. ; Healy, Anne Marie</creator><creatorcontrib>Paluch, Krzysztof J. ; Tajber, Lidia ; Amaro, Maria I. ; Corrigan, Owen I. ; Healy, Anne Marie</creatorcontrib><description>Objectives  In this work we investigated the residual organic solvent content and physicochemical properties of spray‐dried chlorothiazide sodium (CTZNa) and potassium (CTZK) salts. Methods  The powders were characterised by thermal, X‐ray diffraction, infrared and dynamic vapour sorption (DVS) analyses. Solvent levels were investigated by Karl–Fischer titration and gas chromatography. Key findings  Spray‐drying from water, methanol (MeOH) and mixes of MeOH and butyl acetate (BA) resulted in amorphous microparticles. The glass transition temperatures of CTZNa and CTZK were ∼192 and ∼159°C, respectively. These materials retained their amorphous nature when stored at 25°C in dry conditions for at least 6 months with no chemical decomposition observed. DVS determined the critical relative humidity of recrystallisation of CTZNa and CTZK to be 57% RH and 58% RH, respectively. The inlet temperature dependant oxidation of MeOH to formaldehyde was observed; the formaldehyde was seen to deposit within the amorphous matrix of spray‐dried product. Spray‐drying in the open blowing mode coupled with secondary drying resulted in a three‐fold reduction in residual BA (below pharmacopoeial permitted daily exposure limit) compared to spray‐drying in the closed mode. Conclusions  Experiments showed that recirculation of recovered drying gas increases the risk of deposition of residual solvents in the spray‐dried product.</description><identifier>ISSN: 0022-3573</identifier><identifier>EISSN: 2042-7158</identifier><identifier>DOI: 10.1111/j.2042-7158.2012.01543.x</identifier><identifier>PMID: 23058045</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>amorphous ; Chemistry, Pharmaceutical - methods ; Chlorothiazide - chemistry ; Chromatography, Gas ; critical relative humidity of recrystallisation ; Drug Stability ; Drug Storage ; Organic Chemicals - chemistry ; oxidation of organic solvent ; Oxidation-Reduction ; permitted daily exposure ; Powders ; residual solvent level ; Solvents - chemistry ; spray-drying ; Temperature ; Transition Temperature ; X-Ray Diffraction</subject><ispartof>Journal of pharmacy and pharmacology, 2012-11, Vol.64 (11), p.1583-1591</ispartof><rights>2012 The Authors. JPP © 2012 Royal Pharmaceutical Society</rights><rights>2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4583-5e0e00f8c4e6f1569c289f7645c7a46021ff3e71c5e9ee53432e87b48670b16c3</citedby><cites>FETCH-LOGICAL-c4583-5e0e00f8c4e6f1569c289f7645c7a46021ff3e71c5e9ee53432e87b48670b16c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.2042-7158.2012.01543.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.2042-7158.2012.01543.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23058045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paluch, Krzysztof J.</creatorcontrib><creatorcontrib>Tajber, Lidia</creatorcontrib><creatorcontrib>Amaro, Maria I.</creatorcontrib><creatorcontrib>Corrigan, Owen I.</creatorcontrib><creatorcontrib>Healy, Anne Marie</creatorcontrib><title>Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles - Part II. Physicochemical characterisation of spray-dried materials</title><title>Journal of pharmacy and pharmacology</title><addtitle>J Pharm Pharmacol</addtitle><description>Objectives  In this work we investigated the residual organic solvent content and physicochemical properties of spray‐dried chlorothiazide sodium (CTZNa) and potassium (CTZK) salts. Methods  The powders were characterised by thermal, X‐ray diffraction, infrared and dynamic vapour sorption (DVS) analyses. Solvent levels were investigated by Karl–Fischer titration and gas chromatography. Key findings  Spray‐drying from water, methanol (MeOH) and mixes of MeOH and butyl acetate (BA) resulted in amorphous microparticles. The glass transition temperatures of CTZNa and CTZK were ∼192 and ∼159°C, respectively. These materials retained their amorphous nature when stored at 25°C in dry conditions for at least 6 months with no chemical decomposition observed. DVS determined the critical relative humidity of recrystallisation of CTZNa and CTZK to be 57% RH and 58% RH, respectively. The inlet temperature dependant oxidation of MeOH to formaldehyde was observed; the formaldehyde was seen to deposit within the amorphous matrix of spray‐dried product. Spray‐drying in the open blowing mode coupled with secondary drying resulted in a three‐fold reduction in residual BA (below pharmacopoeial permitted daily exposure limit) compared to spray‐drying in the closed mode. Conclusions  Experiments showed that recirculation of recovered drying gas increases the risk of deposition of residual solvents in the spray‐dried product.</description><subject>amorphous</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Chlorothiazide - chemistry</subject><subject>Chromatography, Gas</subject><subject>critical relative humidity of recrystallisation</subject><subject>Drug Stability</subject><subject>Drug Storage</subject><subject>Organic Chemicals - chemistry</subject><subject>oxidation of organic solvent</subject><subject>Oxidation-Reduction</subject><subject>permitted daily exposure</subject><subject>Powders</subject><subject>residual solvent level</subject><subject>Solvents - chemistry</subject><subject>spray-drying</subject><subject>Temperature</subject><subject>Transition Temperature</subject><subject>X-Ray Diffraction</subject><issn>0022-3573</issn><issn>2042-7158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9uEzEQxq0K1Kalr4B85LKL_3tzQUIVTVNFkAOoUi-W48wqDrvZxd6U5LF4Q-xuyaEnfJmR5vt-49GHEKakpOl93JaMCFZoKqvUUVYSKgUvD2dochq8QRNCGCu41PwCXca4JYRopdQ5umCcyIoIOUF_5m1v3YC7GvehcxAjfrLB21UDEXc7PGwAt96FroXgB--w3a1xvzlG7zq3gTSyTXb2EAafLTWOfbDHYh08rEdrb9PMZWCBl6nH83mJl68YbmND-kjaEu3g0-bXJJtntonv0Ns6Fbh-qVfox-2X7zd3xeLbbH7zeVE4ISteSCBASF05AaqmUk0dq6a1VkI6bYUijNY1B02dhCmA5IIzqPRKVEqTFVWOX6EPIzdd92sPcTCtjw6axu6g20eTg6iUYGqapNUoTcfGGKA2ffCtDUdDybPObE3OxeRcTA7MPAdmDsn6_mXLftXC-mT8l1ASfBoFv30Dx_8Gm_vl3TK3CVCMAB8HOJwANvw0SnMtzcPXmRGzx1vxQBZG8r-gMLdA</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Paluch, Krzysztof J.</creator><creator>Tajber, Lidia</creator><creator>Amaro, Maria I.</creator><creator>Corrigan, Owen I.</creator><creator>Healy, Anne Marie</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201211</creationdate><title>Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles - Part II. Physicochemical characterisation of spray-dried materials</title><author>Paluch, Krzysztof J. ; Tajber, Lidia ; Amaro, Maria I. ; Corrigan, Owen I. ; Healy, Anne Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4583-5e0e00f8c4e6f1569c289f7645c7a46021ff3e71c5e9ee53432e87b48670b16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>amorphous</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Chlorothiazide - chemistry</topic><topic>Chromatography, Gas</topic><topic>critical relative humidity of recrystallisation</topic><topic>Drug Stability</topic><topic>Drug Storage</topic><topic>Organic Chemicals - chemistry</topic><topic>oxidation of organic solvent</topic><topic>Oxidation-Reduction</topic><topic>permitted daily exposure</topic><topic>Powders</topic><topic>residual solvent level</topic><topic>Solvents - chemistry</topic><topic>spray-drying</topic><topic>Temperature</topic><topic>Transition Temperature</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paluch, Krzysztof J.</creatorcontrib><creatorcontrib>Tajber, Lidia</creatorcontrib><creatorcontrib>Amaro, Maria I.</creatorcontrib><creatorcontrib>Corrigan, Owen I.</creatorcontrib><creatorcontrib>Healy, Anne Marie</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmacy and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paluch, Krzysztof J.</au><au>Tajber, Lidia</au><au>Amaro, Maria I.</au><au>Corrigan, Owen I.</au><au>Healy, Anne Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles - Part II. Physicochemical characterisation of spray-dried materials</atitle><jtitle>Journal of pharmacy and pharmacology</jtitle><addtitle>J Pharm Pharmacol</addtitle><date>2012-11</date><risdate>2012</risdate><volume>64</volume><issue>11</issue><spage>1583</spage><epage>1591</epage><pages>1583-1591</pages><issn>0022-3573</issn><eissn>2042-7158</eissn><abstract>Objectives  In this work we investigated the residual organic solvent content and physicochemical properties of spray‐dried chlorothiazide sodium (CTZNa) and potassium (CTZK) salts. Methods  The powders were characterised by thermal, X‐ray diffraction, infrared and dynamic vapour sorption (DVS) analyses. Solvent levels were investigated by Karl–Fischer titration and gas chromatography. Key findings  Spray‐drying from water, methanol (MeOH) and mixes of MeOH and butyl acetate (BA) resulted in amorphous microparticles. The glass transition temperatures of CTZNa and CTZK were ∼192 and ∼159°C, respectively. These materials retained their amorphous nature when stored at 25°C in dry conditions for at least 6 months with no chemical decomposition observed. DVS determined the critical relative humidity of recrystallisation of CTZNa and CTZK to be 57% RH and 58% RH, respectively. The inlet temperature dependant oxidation of MeOH to formaldehyde was observed; the formaldehyde was seen to deposit within the amorphous matrix of spray‐dried product. Spray‐drying in the open blowing mode coupled with secondary drying resulted in a three‐fold reduction in residual BA (below pharmacopoeial permitted daily exposure limit) compared to spray‐drying in the closed mode. Conclusions  Experiments showed that recirculation of recovered drying gas increases the risk of deposition of residual solvents in the spray‐dried product.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>23058045</pmid><doi>10.1111/j.2042-7158.2012.01543.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3573
ispartof Journal of pharmacy and pharmacology, 2012-11, Vol.64 (11), p.1583-1591
issn 0022-3573
2042-7158
language eng
recordid cdi_proquest_miscellaneous_1111864269
source MEDLINE; Wiley Journals; Oxford University Press Journals All Titles (1996-Current)
subjects amorphous
Chemistry, Pharmaceutical - methods
Chlorothiazide - chemistry
Chromatography, Gas
critical relative humidity of recrystallisation
Drug Stability
Drug Storage
Organic Chemicals - chemistry
oxidation of organic solvent
Oxidation-Reduction
permitted daily exposure
Powders
residual solvent level
Solvents - chemistry
spray-drying
Temperature
Transition Temperature
X-Ray Diffraction
title Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles - Part II. Physicochemical characterisation of spray-dried materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20process%20variables%20on%20the%20micromeritic%20and%20physicochemical%20properties%20of%20spray-dried%20microparticles%20-%20Part%20II.%20Physicochemical%20characterisation%20of%20spray-dried%20materials&rft.jtitle=Journal%20of%20pharmacy%20and%20pharmacology&rft.au=Paluch,%20Krzysztof%20J.&rft.date=2012-11&rft.volume=64&rft.issue=11&rft.spage=1583&rft.epage=1591&rft.pages=1583-1591&rft.issn=0022-3573&rft.eissn=2042-7158&rft_id=info:doi/10.1111/j.2042-7158.2012.01543.x&rft_dat=%3Cproquest_cross%3E1111864269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1111864269&rft_id=info:pmid/23058045&rfr_iscdi=true