Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs

Abstract In vivo , bone formation is a complex, tightly regulated process, influenced by multiple biochemical and physical factors. To develop a vital bone tissue engineering construct, all of these individual components have to be considered and integrated to gain an in vivo -like stimulation of ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2012-12, Vol.33 (35), p.8975-8985
Hauptverfasser: Hess, Ricarda, Jaeschke, Anna, Neubert, Holger, Hintze, Vera, Moeller, Stephanie, Schnabelrauch, Matthias, Wiesmann, Hans-Peter, Hart, David A, Scharnweber, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8985
container_issue 35
container_start_page 8975
container_title Biomaterials
container_volume 33
creator Hess, Ricarda
Jaeschke, Anna
Neubert, Holger
Hintze, Vera
Moeller, Stephanie
Schnabelrauch, Matthias
Wiesmann, Hans-Peter
Hart, David A
Scharnweber, Dieter
description Abstract In vivo , bone formation is a complex, tightly regulated process, influenced by multiple biochemical and physical factors. To develop a vital bone tissue engineering construct, all of these individual components have to be considered and integrated to gain an in vivo -like stimulation of target cells. The purpose of the present studies was to investigate the synergistic role of defined biochemical and physical microenvironments with respect to osteogenic differentiation of human mesenchymal stem cells (MSCs). Biochemical microenvironments have been designed using artificial extracellular matrices (aECMs), containing collagen I (coll) and glycosaminoglycans (GAGs) like chondroitin sulfate (CS), or a high-sulfated hyaluronan derivative (sHya), formulated as coatings on three-dimensional poly(caprolactone- co -lactide) (PCL) scaffolds. As part of the physical microenvironment, cells were exposed to pulsed electric fields via transformer-like coupling (TC). Results showed that aECM containing sHya enhanced osteogenic differentiation represented by increases in ALP activity and gene-expression (RT-qPCR) of several bone-related proteins (RUNX-2, ALP, OPN). Electric field stimulation alone did not influence cell proliferation, but osteogenic differentiation was enhanced if osteogenic supplements were provided, showing synergistic effects by the combination of sHya and electric fields. These results will improve the understanding of bone regeneration processes and support the development of effective tissue engineered bone constructs.
doi_str_mv 10.1016/j.biomaterials.2012.08.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1095454499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961212009593</els_id><sourcerecordid>1095454499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-2067755253ef6d2a8f3026e7f5081544cdf8230548e7618f54e6c6cc471916133</originalsourceid><addsrcrecordid>eNqNUsuOFCEUJUbjtKO_YIgrN1UCVVCFCxPTPpMxLlrXhIHLSFtdtEAZ-wf8bm-lR2NcuSLAeeTccwl5wlnLGVfP9u11TAdbIUc7lVYwLlo2tkyqO2TDx2FspGbyLtkw3otGKy4uyINS9gzvrBf3yYUQWsuB6Q35uTvNkG9iqdFRCAFcpSlQDyHO4KnNNYbo0IfCj5qtg2laJpsp2ufooFA7e3pcpoJgmJCNrzREmHyhaaapVEg3MOOjj6ieYa7R1rh-BfplOdiZfthty0NyL2AWeHR7XpLPb15_2r5rrj6-fb99edW4vpO1EUwNg5RCdhCUF3YMHRMKhiDZyGXfOx9G0THZjzAoPgbZg3LKuX7gmivedZfk6Vn3mNO3BUo1h1jWUHaGtBTDmZY9CmmN0OdnqMuplAzBHHM82HxCkFl7MHvzdw9m7cGw0WAPSH5867NcH8D_of4ePAJenQGAab9HyKa4CLMDHzNO0fgU_8_nxT8yboo4bTt9hROUfVryvHK4Kcgxu3Uj1oXggmFS3XW_AH_HtvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095454499</pqid></control><display><type>article</type><title>Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hess, Ricarda ; Jaeschke, Anna ; Neubert, Holger ; Hintze, Vera ; Moeller, Stephanie ; Schnabelrauch, Matthias ; Wiesmann, Hans-Peter ; Hart, David A ; Scharnweber, Dieter</creator><creatorcontrib>Hess, Ricarda ; Jaeschke, Anna ; Neubert, Holger ; Hintze, Vera ; Moeller, Stephanie ; Schnabelrauch, Matthias ; Wiesmann, Hans-Peter ; Hart, David A ; Scharnweber, Dieter</creatorcontrib><description>Abstract In vivo , bone formation is a complex, tightly regulated process, influenced by multiple biochemical and physical factors. To develop a vital bone tissue engineering construct, all of these individual components have to be considered and integrated to gain an in vivo -like stimulation of target cells. The purpose of the present studies was to investigate the synergistic role of defined biochemical and physical microenvironments with respect to osteogenic differentiation of human mesenchymal stem cells (MSCs). Biochemical microenvironments have been designed using artificial extracellular matrices (aECMs), containing collagen I (coll) and glycosaminoglycans (GAGs) like chondroitin sulfate (CS), or a high-sulfated hyaluronan derivative (sHya), formulated as coatings on three-dimensional poly(caprolactone- co -lactide) (PCL) scaffolds. As part of the physical microenvironment, cells were exposed to pulsed electric fields via transformer-like coupling (TC). Results showed that aECM containing sHya enhanced osteogenic differentiation represented by increases in ALP activity and gene-expression (RT-qPCR) of several bone-related proteins (RUNX-2, ALP, OPN). Electric field stimulation alone did not influence cell proliferation, but osteogenic differentiation was enhanced if osteogenic supplements were provided, showing synergistic effects by the combination of sHya and electric fields. These results will improve the understanding of bone regeneration processes and support the development of effective tissue engineered bone constructs.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2012.08.056</identifier><identifier>PMID: 22995709</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adult ; Advanced Basic Science ; Bone and Bones - cytology ; Bone tissue engineering ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Chondroitin Sulfates - chemistry ; Collagen - chemistry ; Dentistry ; Electric Stimulation ; Electrical stimulation ; Extracellular matrices (ECMs) ; Extracellular Matrix - chemistry ; Gene Expression ; Glycosaminoglycans (GAGs) ; Glycosaminoglycans - chemistry ; Human mesenchymal stem cells (MSCs) ; Humans ; Hyaluronic Acid - chemistry ; Male ; Mesenchymal Stromal Cells - cytology ; Osteogenesis ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Transformer-like coupling (TC) ; Young Adult</subject><ispartof>Biomaterials, 2012-12, Vol.33 (35), p.8975-8985</ispartof><rights>Elsevier Ltd</rights><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-2067755253ef6d2a8f3026e7f5081544cdf8230548e7618f54e6c6cc471916133</citedby><cites>FETCH-LOGICAL-c435t-2067755253ef6d2a8f3026e7f5081544cdf8230548e7618f54e6c6cc471916133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2012.08.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22995709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hess, Ricarda</creatorcontrib><creatorcontrib>Jaeschke, Anna</creatorcontrib><creatorcontrib>Neubert, Holger</creatorcontrib><creatorcontrib>Hintze, Vera</creatorcontrib><creatorcontrib>Moeller, Stephanie</creatorcontrib><creatorcontrib>Schnabelrauch, Matthias</creatorcontrib><creatorcontrib>Wiesmann, Hans-Peter</creatorcontrib><creatorcontrib>Hart, David A</creatorcontrib><creatorcontrib>Scharnweber, Dieter</creatorcontrib><title>Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract In vivo , bone formation is a complex, tightly regulated process, influenced by multiple biochemical and physical factors. To develop a vital bone tissue engineering construct, all of these individual components have to be considered and integrated to gain an in vivo -like stimulation of target cells. The purpose of the present studies was to investigate the synergistic role of defined biochemical and physical microenvironments with respect to osteogenic differentiation of human mesenchymal stem cells (MSCs). Biochemical microenvironments have been designed using artificial extracellular matrices (aECMs), containing collagen I (coll) and glycosaminoglycans (GAGs) like chondroitin sulfate (CS), or a high-sulfated hyaluronan derivative (sHya), formulated as coatings on three-dimensional poly(caprolactone- co -lactide) (PCL) scaffolds. As part of the physical microenvironment, cells were exposed to pulsed electric fields via transformer-like coupling (TC). Results showed that aECM containing sHya enhanced osteogenic differentiation represented by increases in ALP activity and gene-expression (RT-qPCR) of several bone-related proteins (RUNX-2, ALP, OPN). Electric field stimulation alone did not influence cell proliferation, but osteogenic differentiation was enhanced if osteogenic supplements were provided, showing synergistic effects by the combination of sHya and electric fields. These results will improve the understanding of bone regeneration processes and support the development of effective tissue engineered bone constructs.</description><subject>Adult</subject><subject>Advanced Basic Science</subject><subject>Bone and Bones - cytology</subject><subject>Bone tissue engineering</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Chondroitin Sulfates - chemistry</subject><subject>Collagen - chemistry</subject><subject>Dentistry</subject><subject>Electric Stimulation</subject><subject>Electrical stimulation</subject><subject>Extracellular matrices (ECMs)</subject><subject>Extracellular Matrix - chemistry</subject><subject>Gene Expression</subject><subject>Glycosaminoglycans (GAGs)</subject><subject>Glycosaminoglycans - chemistry</subject><subject>Human mesenchymal stem cells (MSCs)</subject><subject>Humans</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Male</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Osteogenesis</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Transformer-like coupling (TC)</subject><subject>Young Adult</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUsuOFCEUJUbjtKO_YIgrN1UCVVCFCxPTPpMxLlrXhIHLSFtdtEAZ-wf8bm-lR2NcuSLAeeTccwl5wlnLGVfP9u11TAdbIUc7lVYwLlo2tkyqO2TDx2FspGbyLtkw3otGKy4uyINS9gzvrBf3yYUQWsuB6Q35uTvNkG9iqdFRCAFcpSlQDyHO4KnNNYbo0IfCj5qtg2laJpsp2ufooFA7e3pcpoJgmJCNrzREmHyhaaapVEg3MOOjj6ieYa7R1rh-BfplOdiZfthty0NyL2AWeHR7XpLPb15_2r5rrj6-fb99edW4vpO1EUwNg5RCdhCUF3YMHRMKhiDZyGXfOx9G0THZjzAoPgbZg3LKuX7gmivedZfk6Vn3mNO3BUo1h1jWUHaGtBTDmZY9CmmN0OdnqMuplAzBHHM82HxCkFl7MHvzdw9m7cGw0WAPSH5867NcH8D_of4ePAJenQGAab9HyKa4CLMDHzNO0fgU_8_nxT8yboo4bTt9hROUfVryvHK4Kcgxu3Uj1oXggmFS3XW_AH_HtvM</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Hess, Ricarda</creator><creator>Jaeschke, Anna</creator><creator>Neubert, Holger</creator><creator>Hintze, Vera</creator><creator>Moeller, Stephanie</creator><creator>Schnabelrauch, Matthias</creator><creator>Wiesmann, Hans-Peter</creator><creator>Hart, David A</creator><creator>Scharnweber, Dieter</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20121201</creationdate><title>Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs</title><author>Hess, Ricarda ; Jaeschke, Anna ; Neubert, Holger ; Hintze, Vera ; Moeller, Stephanie ; Schnabelrauch, Matthias ; Wiesmann, Hans-Peter ; Hart, David A ; Scharnweber, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-2067755253ef6d2a8f3026e7f5081544cdf8230548e7618f54e6c6cc471916133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Advanced Basic Science</topic><topic>Bone and Bones - cytology</topic><topic>Bone tissue engineering</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Chondroitin Sulfates - chemistry</topic><topic>Collagen - chemistry</topic><topic>Dentistry</topic><topic>Electric Stimulation</topic><topic>Electrical stimulation</topic><topic>Extracellular matrices (ECMs)</topic><topic>Extracellular Matrix - chemistry</topic><topic>Gene Expression</topic><topic>Glycosaminoglycans (GAGs)</topic><topic>Glycosaminoglycans - chemistry</topic><topic>Human mesenchymal stem cells (MSCs)</topic><topic>Humans</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Male</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Osteogenesis</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Transformer-like coupling (TC)</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hess, Ricarda</creatorcontrib><creatorcontrib>Jaeschke, Anna</creatorcontrib><creatorcontrib>Neubert, Holger</creatorcontrib><creatorcontrib>Hintze, Vera</creatorcontrib><creatorcontrib>Moeller, Stephanie</creatorcontrib><creatorcontrib>Schnabelrauch, Matthias</creatorcontrib><creatorcontrib>Wiesmann, Hans-Peter</creatorcontrib><creatorcontrib>Hart, David A</creatorcontrib><creatorcontrib>Scharnweber, Dieter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hess, Ricarda</au><au>Jaeschke, Anna</au><au>Neubert, Holger</au><au>Hintze, Vera</au><au>Moeller, Stephanie</au><au>Schnabelrauch, Matthias</au><au>Wiesmann, Hans-Peter</au><au>Hart, David A</au><au>Scharnweber, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>33</volume><issue>35</issue><spage>8975</spage><epage>8985</epage><pages>8975-8985</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract In vivo , bone formation is a complex, tightly regulated process, influenced by multiple biochemical and physical factors. To develop a vital bone tissue engineering construct, all of these individual components have to be considered and integrated to gain an in vivo -like stimulation of target cells. The purpose of the present studies was to investigate the synergistic role of defined biochemical and physical microenvironments with respect to osteogenic differentiation of human mesenchymal stem cells (MSCs). Biochemical microenvironments have been designed using artificial extracellular matrices (aECMs), containing collagen I (coll) and glycosaminoglycans (GAGs) like chondroitin sulfate (CS), or a high-sulfated hyaluronan derivative (sHya), formulated as coatings on three-dimensional poly(caprolactone- co -lactide) (PCL) scaffolds. As part of the physical microenvironment, cells were exposed to pulsed electric fields via transformer-like coupling (TC). Results showed that aECM containing sHya enhanced osteogenic differentiation represented by increases in ALP activity and gene-expression (RT-qPCR) of several bone-related proteins (RUNX-2, ALP, OPN). Electric field stimulation alone did not influence cell proliferation, but osteogenic differentiation was enhanced if osteogenic supplements were provided, showing synergistic effects by the combination of sHya and electric fields. These results will improve the understanding of bone regeneration processes and support the development of effective tissue engineered bone constructs.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>22995709</pmid><doi>10.1016/j.biomaterials.2012.08.056</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2012-12, Vol.33 (35), p.8975-8985
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1095454499
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Advanced Basic Science
Bone and Bones - cytology
Bone tissue engineering
Cell Differentiation
Cell Proliferation
Cells, Cultured
Chondroitin Sulfates - chemistry
Collagen - chemistry
Dentistry
Electric Stimulation
Electrical stimulation
Extracellular matrices (ECMs)
Extracellular Matrix - chemistry
Gene Expression
Glycosaminoglycans (GAGs)
Glycosaminoglycans - chemistry
Human mesenchymal stem cells (MSCs)
Humans
Hyaluronic Acid - chemistry
Male
Mesenchymal Stromal Cells - cytology
Osteogenesis
Tissue Engineering
Tissue Scaffolds - chemistry
Transformer-like coupling (TC)
Young Adult
title Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A16%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effect%20of%20defined%20artificial%20extracellular%20matrices%20and%20pulsed%20electric%20fields%20on%20osteogenic%20differentiation%20of%20human%20MSCs&rft.jtitle=Biomaterials&rft.au=Hess,%20Ricarda&rft.date=2012-12-01&rft.volume=33&rft.issue=35&rft.spage=8975&rft.epage=8985&rft.pages=8975-8985&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2012.08.056&rft_dat=%3Cproquest_cross%3E1095454499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095454499&rft_id=info:pmid/22995709&rft_els_id=1_s2_0_S0142961212009593&rfr_iscdi=true