Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography
High-density diffuse optical tomography (HD-DOT) is an emerging technique for visualizing the internal state of biological tissues. The large number of overlapping measurement channels due to the use of high-density probe arrays permits the reconstruction of the internal optical properties, even wit...
Gespeichert in:
Veröffentlicht in: | Optics express 2012-08, Vol.20 (18), p.20427-20446 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20446 |
---|---|
container_issue | 18 |
container_start_page | 20427 |
container_title | Optics express |
container_volume | 20 |
creator | Shimokawa, Takeaki Kosaka, Takashi Yamashita, Okito Hiroe, Nobuo Amita, Takashi Inoue, Yoshihiro Sato, Masa-aki |
description | High-density diffuse optical tomography (HD-DOT) is an emerging technique for visualizing the internal state of biological tissues. The large number of overlapping measurement channels due to the use of high-density probe arrays permits the reconstruction of the internal optical properties, even with a reflectance-only measurement. However, accurate three-dimensional reconstruction is still a challenging problem. First, the exponentially decaying sensitivity causes a systematic depth-localization error. Second, the nature of diffusive light makes the image blurred. In this paper, we propose a three-dimensional reconstruction method that overcomes these two problems by introducing sensitivity-normalized regularization and sparsity into the hierarchical Bayesian method. Phantom experiments were performed to validate the proposed method under three conditions of probe interval: 26 mm, 18.4 mm, and 13 mm. We found that two absorbers with distances shorter than the probe interval could be discriminated under the high-density conditions of 18.4-mm and 13-mm intervals. This discrimination ability was possible even if the depths of the two absorbers were different from each other. These results show the high spatial resolution of the proposed method in both depth and horizontal directions. |
doi_str_mv | 10.1364/OE.20.020427 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1093531504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1093531504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-2526b162030697bf8bee34d40ce087c19bc2fdff026ef6f51b976fff226576283</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EoqWwMSOPDKT4K04zQlUoUqUuMEeOc6ZGSRzsBCn_HtMWxHQ3PPfq3geha0rmlEtxv13NGZkTRgTLTtCUklwkgiyy03_7BF2E8EEIFVmenaMJ44RnJGdT1KwteOX1zmpV40c1QrCqxRB626jeuhbbpvPuCwKuoOt3WGk9eKVHrNoKhy4y8c5DcPWwx53BlTVmCIBd1-9Te9e4d6-63XiJzoyqA1wd5wy9Pa1el-tks31-WT5sEs3ztE9YymRJJSOcyDwrzaIE4KISREMso2leamYqYwiTYKRJaZln0hjDmEwzyRZ8hm4PufH1zyGWKRobNNS1asENoYhieMppSkRE7w6o9i4ED6bofKzuxwgVP4KL7apgpDgIjvjNMXkoG6j-4F-j_Bu9oHex</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093531504</pqid></control><display><type>article</type><title>Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Shimokawa, Takeaki ; Kosaka, Takashi ; Yamashita, Okito ; Hiroe, Nobuo ; Amita, Takashi ; Inoue, Yoshihiro ; Sato, Masa-aki</creator><creatorcontrib>Shimokawa, Takeaki ; Kosaka, Takashi ; Yamashita, Okito ; Hiroe, Nobuo ; Amita, Takashi ; Inoue, Yoshihiro ; Sato, Masa-aki</creatorcontrib><description>High-density diffuse optical tomography (HD-DOT) is an emerging technique for visualizing the internal state of biological tissues. The large number of overlapping measurement channels due to the use of high-density probe arrays permits the reconstruction of the internal optical properties, even with a reflectance-only measurement. However, accurate three-dimensional reconstruction is still a challenging problem. First, the exponentially decaying sensitivity causes a systematic depth-localization error. Second, the nature of diffusive light makes the image blurred. In this paper, we propose a three-dimensional reconstruction method that overcomes these two problems by introducing sensitivity-normalized regularization and sparsity into the hierarchical Bayesian method. Phantom experiments were performed to validate the proposed method under three conditions of probe interval: 26 mm, 18.4 mm, and 13 mm. We found that two absorbers with distances shorter than the probe interval could be discriminated under the high-density conditions of 18.4-mm and 13-mm intervals. This discrimination ability was possible even if the depths of the two absorbers were different from each other. These results show the high spatial resolution of the proposed method in both depth and horizontal directions.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.20.020427</identifier><identifier>PMID: 23037092</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Bayes Theorem ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Nephelometry and Turbidimetry - methods ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Tomography, Optical - methods</subject><ispartof>Optics express, 2012-08, Vol.20 (18), p.20427-20446</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-2526b162030697bf8bee34d40ce087c19bc2fdff026ef6f51b976fff226576283</citedby><cites>FETCH-LOGICAL-c395t-2526b162030697bf8bee34d40ce087c19bc2fdff026ef6f51b976fff226576283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23037092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimokawa, Takeaki</creatorcontrib><creatorcontrib>Kosaka, Takashi</creatorcontrib><creatorcontrib>Yamashita, Okito</creatorcontrib><creatorcontrib>Hiroe, Nobuo</creatorcontrib><creatorcontrib>Amita, Takashi</creatorcontrib><creatorcontrib>Inoue, Yoshihiro</creatorcontrib><creatorcontrib>Sato, Masa-aki</creatorcontrib><title>Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>High-density diffuse optical tomography (HD-DOT) is an emerging technique for visualizing the internal state of biological tissues. The large number of overlapping measurement channels due to the use of high-density probe arrays permits the reconstruction of the internal optical properties, even with a reflectance-only measurement. However, accurate three-dimensional reconstruction is still a challenging problem. First, the exponentially decaying sensitivity causes a systematic depth-localization error. Second, the nature of diffusive light makes the image blurred. In this paper, we propose a three-dimensional reconstruction method that overcomes these two problems by introducing sensitivity-normalized regularization and sparsity into the hierarchical Bayesian method. Phantom experiments were performed to validate the proposed method under three conditions of probe interval: 26 mm, 18.4 mm, and 13 mm. We found that two absorbers with distances shorter than the probe interval could be discriminated under the high-density conditions of 18.4-mm and 13-mm intervals. This discrimination ability was possible even if the depths of the two absorbers were different from each other. These results show the high spatial resolution of the proposed method in both depth and horizontal directions.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Nephelometry and Turbidimetry - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Tomography, Optical - methods</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkD1PwzAQhi0EoqWwMSOPDKT4K04zQlUoUqUuMEeOc6ZGSRzsBCn_HtMWxHQ3PPfq3geha0rmlEtxv13NGZkTRgTLTtCUklwkgiyy03_7BF2E8EEIFVmenaMJ44RnJGdT1KwteOX1zmpV40c1QrCqxRB626jeuhbbpvPuCwKuoOt3WGk9eKVHrNoKhy4y8c5DcPWwx53BlTVmCIBd1-9Te9e4d6-63XiJzoyqA1wd5wy9Pa1el-tks31-WT5sEs3ztE9YymRJJSOcyDwrzaIE4KISREMso2leamYqYwiTYKRJaZln0hjDmEwzyRZ8hm4PufH1zyGWKRobNNS1asENoYhieMppSkRE7w6o9i4ED6bofKzuxwgVP4KL7apgpDgIjvjNMXkoG6j-4F-j_Bu9oHex</recordid><startdate>20120827</startdate><enddate>20120827</enddate><creator>Shimokawa, Takeaki</creator><creator>Kosaka, Takashi</creator><creator>Yamashita, Okito</creator><creator>Hiroe, Nobuo</creator><creator>Amita, Takashi</creator><creator>Inoue, Yoshihiro</creator><creator>Sato, Masa-aki</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120827</creationdate><title>Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography</title><author>Shimokawa, Takeaki ; Kosaka, Takashi ; Yamashita, Okito ; Hiroe, Nobuo ; Amita, Takashi ; Inoue, Yoshihiro ; Sato, Masa-aki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-2526b162030697bf8bee34d40ce087c19bc2fdff026ef6f51b976fff226576283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Nephelometry and Turbidimetry - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Tomography, Optical - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimokawa, Takeaki</creatorcontrib><creatorcontrib>Kosaka, Takashi</creatorcontrib><creatorcontrib>Yamashita, Okito</creatorcontrib><creatorcontrib>Hiroe, Nobuo</creatorcontrib><creatorcontrib>Amita, Takashi</creatorcontrib><creatorcontrib>Inoue, Yoshihiro</creatorcontrib><creatorcontrib>Sato, Masa-aki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimokawa, Takeaki</au><au>Kosaka, Takashi</au><au>Yamashita, Okito</au><au>Hiroe, Nobuo</au><au>Amita, Takashi</au><au>Inoue, Yoshihiro</au><au>Sato, Masa-aki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2012-08-27</date><risdate>2012</risdate><volume>20</volume><issue>18</issue><spage>20427</spage><epage>20446</epage><pages>20427-20446</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>High-density diffuse optical tomography (HD-DOT) is an emerging technique for visualizing the internal state of biological tissues. The large number of overlapping measurement channels due to the use of high-density probe arrays permits the reconstruction of the internal optical properties, even with a reflectance-only measurement. However, accurate three-dimensional reconstruction is still a challenging problem. First, the exponentially decaying sensitivity causes a systematic depth-localization error. Second, the nature of diffusive light makes the image blurred. In this paper, we propose a three-dimensional reconstruction method that overcomes these two problems by introducing sensitivity-normalized regularization and sparsity into the hierarchical Bayesian method. Phantom experiments were performed to validate the proposed method under three conditions of probe interval: 26 mm, 18.4 mm, and 13 mm. We found that two absorbers with distances shorter than the probe interval could be discriminated under the high-density conditions of 18.4-mm and 13-mm intervals. This discrimination ability was possible even if the depths of the two absorbers were different from each other. These results show the high spatial resolution of the proposed method in both depth and horizontal directions.</abstract><cop>United States</cop><pmid>23037092</pmid><doi>10.1364/OE.20.020427</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2012-08, Vol.20 (18), p.20427-20446 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_1093531504 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Bayes Theorem Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Nephelometry and Turbidimetry - methods Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Tomography, Optical - methods |
title | Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Bayesian%20estimation%20improves%20depth%20accuracy%20and%20spatial%20resolution%20of%20diffuse%20optical%20tomography&rft.jtitle=Optics%20express&rft.au=Shimokawa,%20Takeaki&rft.date=2012-08-27&rft.volume=20&rft.issue=18&rft.spage=20427&rft.epage=20446&rft.pages=20427-20446&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.20.020427&rft_dat=%3Cproquest_cross%3E1093531504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1093531504&rft_id=info:pmid/23037092&rfr_iscdi=true |