Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography

High-density diffuse optical tomography (HD-DOT) is an emerging technique for visualizing the internal state of biological tissues. The large number of overlapping measurement channels due to the use of high-density probe arrays permits the reconstruction of the internal optical properties, even wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2012-08, Vol.20 (18), p.20427-20446
Hauptverfasser: Shimokawa, Takeaki, Kosaka, Takashi, Yamashita, Okito, Hiroe, Nobuo, Amita, Takashi, Inoue, Yoshihiro, Sato, Masa-aki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20446
container_issue 18
container_start_page 20427
container_title Optics express
container_volume 20
creator Shimokawa, Takeaki
Kosaka, Takashi
Yamashita, Okito
Hiroe, Nobuo
Amita, Takashi
Inoue, Yoshihiro
Sato, Masa-aki
description High-density diffuse optical tomography (HD-DOT) is an emerging technique for visualizing the internal state of biological tissues. The large number of overlapping measurement channels due to the use of high-density probe arrays permits the reconstruction of the internal optical properties, even with a reflectance-only measurement. However, accurate three-dimensional reconstruction is still a challenging problem. First, the exponentially decaying sensitivity causes a systematic depth-localization error. Second, the nature of diffusive light makes the image blurred. In this paper, we propose a three-dimensional reconstruction method that overcomes these two problems by introducing sensitivity-normalized regularization and sparsity into the hierarchical Bayesian method. Phantom experiments were performed to validate the proposed method under three conditions of probe interval: 26 mm, 18.4 mm, and 13 mm. We found that two absorbers with distances shorter than the probe interval could be discriminated under the high-density conditions of 18.4-mm and 13-mm intervals. This discrimination ability was possible even if the depths of the two absorbers were different from each other. These results show the high spatial resolution of the proposed method in both depth and horizontal directions.
doi_str_mv 10.1364/OE.20.020427
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1093531504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1093531504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-2526b162030697bf8bee34d40ce087c19bc2fdff026ef6f51b976fff226576283</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EoqWwMSOPDKT4K04zQlUoUqUuMEeOc6ZGSRzsBCn_HtMWxHQ3PPfq3geha0rmlEtxv13NGZkTRgTLTtCUklwkgiyy03_7BF2E8EEIFVmenaMJ44RnJGdT1KwteOX1zmpV40c1QrCqxRB626jeuhbbpvPuCwKuoOt3WGk9eKVHrNoKhy4y8c5DcPWwx53BlTVmCIBd1-9Te9e4d6-63XiJzoyqA1wd5wy9Pa1el-tks31-WT5sEs3ztE9YymRJJSOcyDwrzaIE4KISREMso2leamYqYwiTYKRJaZln0hjDmEwzyRZ8hm4PufH1zyGWKRobNNS1asENoYhieMppSkRE7w6o9i4ED6bofKzuxwgVP4KL7apgpDgIjvjNMXkoG6j-4F-j_Bu9oHex</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093531504</pqid></control><display><type>article</type><title>Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Shimokawa, Takeaki ; Kosaka, Takashi ; Yamashita, Okito ; Hiroe, Nobuo ; Amita, Takashi ; Inoue, Yoshihiro ; Sato, Masa-aki</creator><creatorcontrib>Shimokawa, Takeaki ; Kosaka, Takashi ; Yamashita, Okito ; Hiroe, Nobuo ; Amita, Takashi ; Inoue, Yoshihiro ; Sato, Masa-aki</creatorcontrib><description>High-density diffuse optical tomography (HD-DOT) is an emerging technique for visualizing the internal state of biological tissues. The large number of overlapping measurement channels due to the use of high-density probe arrays permits the reconstruction of the internal optical properties, even with a reflectance-only measurement. However, accurate three-dimensional reconstruction is still a challenging problem. First, the exponentially decaying sensitivity causes a systematic depth-localization error. Second, the nature of diffusive light makes the image blurred. In this paper, we propose a three-dimensional reconstruction method that overcomes these two problems by introducing sensitivity-normalized regularization and sparsity into the hierarchical Bayesian method. Phantom experiments were performed to validate the proposed method under three conditions of probe interval: 26 mm, 18.4 mm, and 13 mm. We found that two absorbers with distances shorter than the probe interval could be discriminated under the high-density conditions of 18.4-mm and 13-mm intervals. This discrimination ability was possible even if the depths of the two absorbers were different from each other. These results show the high spatial resolution of the proposed method in both depth and horizontal directions.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.20.020427</identifier><identifier>PMID: 23037092</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Bayes Theorem ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Nephelometry and Turbidimetry - methods ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Tomography, Optical - methods</subject><ispartof>Optics express, 2012-08, Vol.20 (18), p.20427-20446</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-2526b162030697bf8bee34d40ce087c19bc2fdff026ef6f51b976fff226576283</citedby><cites>FETCH-LOGICAL-c395t-2526b162030697bf8bee34d40ce087c19bc2fdff026ef6f51b976fff226576283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23037092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimokawa, Takeaki</creatorcontrib><creatorcontrib>Kosaka, Takashi</creatorcontrib><creatorcontrib>Yamashita, Okito</creatorcontrib><creatorcontrib>Hiroe, Nobuo</creatorcontrib><creatorcontrib>Amita, Takashi</creatorcontrib><creatorcontrib>Inoue, Yoshihiro</creatorcontrib><creatorcontrib>Sato, Masa-aki</creatorcontrib><title>Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>High-density diffuse optical tomography (HD-DOT) is an emerging technique for visualizing the internal state of biological tissues. The large number of overlapping measurement channels due to the use of high-density probe arrays permits the reconstruction of the internal optical properties, even with a reflectance-only measurement. However, accurate three-dimensional reconstruction is still a challenging problem. First, the exponentially decaying sensitivity causes a systematic depth-localization error. Second, the nature of diffusive light makes the image blurred. In this paper, we propose a three-dimensional reconstruction method that overcomes these two problems by introducing sensitivity-normalized regularization and sparsity into the hierarchical Bayesian method. Phantom experiments were performed to validate the proposed method under three conditions of probe interval: 26 mm, 18.4 mm, and 13 mm. We found that two absorbers with distances shorter than the probe interval could be discriminated under the high-density conditions of 18.4-mm and 13-mm intervals. This discrimination ability was possible even if the depths of the two absorbers were different from each other. These results show the high spatial resolution of the proposed method in both depth and horizontal directions.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Nephelometry and Turbidimetry - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Tomography, Optical - methods</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkD1PwzAQhi0EoqWwMSOPDKT4K04zQlUoUqUuMEeOc6ZGSRzsBCn_HtMWxHQ3PPfq3geha0rmlEtxv13NGZkTRgTLTtCUklwkgiyy03_7BF2E8EEIFVmenaMJ44RnJGdT1KwteOX1zmpV40c1QrCqxRB626jeuhbbpvPuCwKuoOt3WGk9eKVHrNoKhy4y8c5DcPWwx53BlTVmCIBd1-9Te9e4d6-63XiJzoyqA1wd5wy9Pa1el-tks31-WT5sEs3ztE9YymRJJSOcyDwrzaIE4KISREMso2leamYqYwiTYKRJaZln0hjDmEwzyRZ8hm4PufH1zyGWKRobNNS1asENoYhieMppSkRE7w6o9i4ED6bofKzuxwgVP4KL7apgpDgIjvjNMXkoG6j-4F-j_Bu9oHex</recordid><startdate>20120827</startdate><enddate>20120827</enddate><creator>Shimokawa, Takeaki</creator><creator>Kosaka, Takashi</creator><creator>Yamashita, Okito</creator><creator>Hiroe, Nobuo</creator><creator>Amita, Takashi</creator><creator>Inoue, Yoshihiro</creator><creator>Sato, Masa-aki</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120827</creationdate><title>Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography</title><author>Shimokawa, Takeaki ; Kosaka, Takashi ; Yamashita, Okito ; Hiroe, Nobuo ; Amita, Takashi ; Inoue, Yoshihiro ; Sato, Masa-aki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-2526b162030697bf8bee34d40ce087c19bc2fdff026ef6f51b976fff226576283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Nephelometry and Turbidimetry - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Tomography, Optical - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimokawa, Takeaki</creatorcontrib><creatorcontrib>Kosaka, Takashi</creatorcontrib><creatorcontrib>Yamashita, Okito</creatorcontrib><creatorcontrib>Hiroe, Nobuo</creatorcontrib><creatorcontrib>Amita, Takashi</creatorcontrib><creatorcontrib>Inoue, Yoshihiro</creatorcontrib><creatorcontrib>Sato, Masa-aki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimokawa, Takeaki</au><au>Kosaka, Takashi</au><au>Yamashita, Okito</au><au>Hiroe, Nobuo</au><au>Amita, Takashi</au><au>Inoue, Yoshihiro</au><au>Sato, Masa-aki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2012-08-27</date><risdate>2012</risdate><volume>20</volume><issue>18</issue><spage>20427</spage><epage>20446</epage><pages>20427-20446</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>High-density diffuse optical tomography (HD-DOT) is an emerging technique for visualizing the internal state of biological tissues. The large number of overlapping measurement channels due to the use of high-density probe arrays permits the reconstruction of the internal optical properties, even with a reflectance-only measurement. However, accurate three-dimensional reconstruction is still a challenging problem. First, the exponentially decaying sensitivity causes a systematic depth-localization error. Second, the nature of diffusive light makes the image blurred. In this paper, we propose a three-dimensional reconstruction method that overcomes these two problems by introducing sensitivity-normalized regularization and sparsity into the hierarchical Bayesian method. Phantom experiments were performed to validate the proposed method under three conditions of probe interval: 26 mm, 18.4 mm, and 13 mm. We found that two absorbers with distances shorter than the probe interval could be discriminated under the high-density conditions of 18.4-mm and 13-mm intervals. This discrimination ability was possible even if the depths of the two absorbers were different from each other. These results show the high spatial resolution of the proposed method in both depth and horizontal directions.</abstract><cop>United States</cop><pmid>23037092</pmid><doi>10.1364/OE.20.020427</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2012-08, Vol.20 (18), p.20427-20446
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_1093531504
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Bayes Theorem
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Nephelometry and Turbidimetry - methods
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Tomography, Optical - methods
title Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Bayesian%20estimation%20improves%20depth%20accuracy%20and%20spatial%20resolution%20of%20diffuse%20optical%20tomography&rft.jtitle=Optics%20express&rft.au=Shimokawa,%20Takeaki&rft.date=2012-08-27&rft.volume=20&rft.issue=18&rft.spage=20427&rft.epage=20446&rft.pages=20427-20446&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.20.020427&rft_dat=%3Cproquest_cross%3E1093531504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1093531504&rft_id=info:pmid/23037092&rfr_iscdi=true