MEF2 negatively regulates learning-induced structural plasticity and memory formation

The authors report that endogenous myocyte enhance factor 2 (MEF2) levels affect spatial and fear memory formation in adult mice. MEF2-induced memory disruption was rescued by interfering with AMPA receptor endocytosis. Memory formation is thought to be mediated by dendritic-spine growth and restruc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2012-09, Vol.15 (9), p.1255-1264
Hauptverfasser: Cole, Christina J, Mercaldo, Valentina, Restivo, Leonardo, Yiu, Adelaide P, Sekeres, Melanie J, Han, Jin-Hee, Vetere, Gisella, Pekar, Tetyana, Ross, P Joel, Neve, Rachael L, Frankland, Paul W, Josselyn, Sheena A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1264
container_issue 9
container_start_page 1255
container_title Nature neuroscience
container_volume 15
creator Cole, Christina J
Mercaldo, Valentina
Restivo, Leonardo
Yiu, Adelaide P
Sekeres, Melanie J
Han, Jin-Hee
Vetere, Gisella
Pekar, Tetyana
Ross, P Joel
Neve, Rachael L
Frankland, Paul W
Josselyn, Sheena A
description The authors report that endogenous myocyte enhance factor 2 (MEF2) levels affect spatial and fear memory formation in adult mice. MEF2-induced memory disruption was rescued by interfering with AMPA receptor endocytosis. Memory formation is thought to be mediated by dendritic-spine growth and restructuring. Myocyte enhancer factor 2 (MEF2) restricts spine growth in vitro , suggesting that this transcription factor negatively regulates the spine remodeling necessary for memory formation. Here we show that memory formation in adult mice was associated with changes in endogenous MEF2 levels and function. Locally and acutely increasing MEF2 function in the dentate gyrus blocked both learning-induced increases in spine density and spatial-memory formation. Increasing MEF2 function in amygdala disrupted fear-memory formation. We rescued MEF2-induced memory disruption by interfering with AMPA receptor endocytosis, suggesting that AMPA receptor trafficking is a key mechanism underlying the effects of MEF2. In contrast, decreasing MEF2 function in dentate gyrus and amygdala facilitated the formation of spatial and fear memory, respectively. These bidirectional effects indicate that MEF2 is a key regulator of plasticity and that relieving the suppressive effects of MEF2-mediated transcription permits memory formation.
doi_str_mv 10.1038/nn.3189
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1093468785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A302114386</galeid><sourcerecordid>A302114386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-27d475d09bb76420689305c02d9428bc2684c3ca8678815588718b189fe79f503</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhoMotlbxH8iCF-rFHrPZfEwuS2m1UBHUXi_Z7OySsps95qN4_r05tFqPeCG5SJg88_K-wxDysqGbhrbw3vtN24B-RI4bwWXdKCYflzfVqpZMyCPyLMYbSqkSoJ-SI8YABHB9TK4_nV-wyuNkkrvFeVcFnPJsEsZqRhO881Pt_JAtDlVMIduUg5mr7WxictalXWX8UC24rGFXjWtYis7qn5Mno5kjvri_T8j1xfm3s4_11ecPl2enV7UVnKWaqYErMVDd90pyRiXolgpL2aA5g94yCdy21oBUAI0QAKqBvuQcUelR0PaEvL3T3Yb1e8aYusVFi_NsPK45dmUALZegQPwH2iopKRO6oK__Qm_WHHwJsqeKNUUlf6AmM2Pn_LimYOxetDttKWsa3oIs1OYfVDkDLs6uHkdX6gcN7w4aCpPwR5pMjrG7_PrlkH1zx9qwxhhw7LbBLSbsis-9Vei87_Z7UchX95Fyv-Dwm_u1CA_jieXLTxj-zHyo9RNltrtq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039427064</pqid></control><display><type>article</type><title>MEF2 negatively regulates learning-induced structural plasticity and memory formation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Cole, Christina J ; Mercaldo, Valentina ; Restivo, Leonardo ; Yiu, Adelaide P ; Sekeres, Melanie J ; Han, Jin-Hee ; Vetere, Gisella ; Pekar, Tetyana ; Ross, P Joel ; Neve, Rachael L ; Frankland, Paul W ; Josselyn, Sheena A</creator><creatorcontrib>Cole, Christina J ; Mercaldo, Valentina ; Restivo, Leonardo ; Yiu, Adelaide P ; Sekeres, Melanie J ; Han, Jin-Hee ; Vetere, Gisella ; Pekar, Tetyana ; Ross, P Joel ; Neve, Rachael L ; Frankland, Paul W ; Josselyn, Sheena A</creatorcontrib><description>The authors report that endogenous myocyte enhance factor 2 (MEF2) levels affect spatial and fear memory formation in adult mice. MEF2-induced memory disruption was rescued by interfering with AMPA receptor endocytosis. Memory formation is thought to be mediated by dendritic-spine growth and restructuring. Myocyte enhancer factor 2 (MEF2) restricts spine growth in vitro , suggesting that this transcription factor negatively regulates the spine remodeling necessary for memory formation. Here we show that memory formation in adult mice was associated with changes in endogenous MEF2 levels and function. Locally and acutely increasing MEF2 function in the dentate gyrus blocked both learning-induced increases in spine density and spatial-memory formation. Increasing MEF2 function in amygdala disrupted fear-memory formation. We rescued MEF2-induced memory disruption by interfering with AMPA receptor endocytosis, suggesting that AMPA receptor trafficking is a key mechanism underlying the effects of MEF2. In contrast, decreasing MEF2 function in dentate gyrus and amygdala facilitated the formation of spatial and fear memory, respectively. These bidirectional effects indicate that MEF2 is a key regulator of plasticity and that relieving the suppressive effects of MEF2-mediated transcription permits memory formation.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3189</identifier><identifier>PMID: 22885849</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/208/200 ; 631/378/1595 ; 631/378/2591 ; Amygdala - metabolism ; Amygdala - physiology ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Blotting, Western ; Conditioning (Psychology) - physiology ; Dendritic Spines - physiology ; Dependovirus ; Endocytosis - physiology ; Fear ; Female ; Genetic Vectors ; Hippocampus - cytology ; Hippocampus - physiology ; Immunohistochemistry ; In Situ Hybridization, Fluorescence ; Learning - physiology ; Luciferases - genetics ; Male ; Maze Learning - physiology ; MEF2 Transcription Factors ; Memory ; Memory - physiology ; Mice ; Mice, Inbred C57BL ; Myogenic Regulatory Factors - genetics ; Myogenic Regulatory Factors - physiology ; Neurobiology ; Neuronal Plasticity - physiology ; Neurons - physiology ; Neuroplasticity ; Neurosciences ; Physiological aspects ; Proteins ; Receptors, AMPA - physiology ; Simplexvirus - genetics ; Transcription factors</subject><ispartof>Nature neuroscience, 2012-09, Vol.15 (9), p.1255-1264</ispartof><rights>Springer Nature America, Inc. 2012</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-27d475d09bb76420689305c02d9428bc2684c3ca8678815588718b189fe79f503</citedby><cites>FETCH-LOGICAL-c542t-27d475d09bb76420689305c02d9428bc2684c3ca8678815588718b189fe79f503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3189$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3189$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22885849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cole, Christina J</creatorcontrib><creatorcontrib>Mercaldo, Valentina</creatorcontrib><creatorcontrib>Restivo, Leonardo</creatorcontrib><creatorcontrib>Yiu, Adelaide P</creatorcontrib><creatorcontrib>Sekeres, Melanie J</creatorcontrib><creatorcontrib>Han, Jin-Hee</creatorcontrib><creatorcontrib>Vetere, Gisella</creatorcontrib><creatorcontrib>Pekar, Tetyana</creatorcontrib><creatorcontrib>Ross, P Joel</creatorcontrib><creatorcontrib>Neve, Rachael L</creatorcontrib><creatorcontrib>Frankland, Paul W</creatorcontrib><creatorcontrib>Josselyn, Sheena A</creatorcontrib><title>MEF2 negatively regulates learning-induced structural plasticity and memory formation</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The authors report that endogenous myocyte enhance factor 2 (MEF2) levels affect spatial and fear memory formation in adult mice. MEF2-induced memory disruption was rescued by interfering with AMPA receptor endocytosis. Memory formation is thought to be mediated by dendritic-spine growth and restructuring. Myocyte enhancer factor 2 (MEF2) restricts spine growth in vitro , suggesting that this transcription factor negatively regulates the spine remodeling necessary for memory formation. Here we show that memory formation in adult mice was associated with changes in endogenous MEF2 levels and function. Locally and acutely increasing MEF2 function in the dentate gyrus blocked both learning-induced increases in spine density and spatial-memory formation. Increasing MEF2 function in amygdala disrupted fear-memory formation. We rescued MEF2-induced memory disruption by interfering with AMPA receptor endocytosis, suggesting that AMPA receptor trafficking is a key mechanism underlying the effects of MEF2. In contrast, decreasing MEF2 function in dentate gyrus and amygdala facilitated the formation of spatial and fear memory, respectively. These bidirectional effects indicate that MEF2 is a key regulator of plasticity and that relieving the suppressive effects of MEF2-mediated transcription permits memory formation.</description><subject>631/208/200</subject><subject>631/378/1595</subject><subject>631/378/2591</subject><subject>Amygdala - metabolism</subject><subject>Amygdala - physiology</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blotting, Western</subject><subject>Conditioning (Psychology) - physiology</subject><subject>Dendritic Spines - physiology</subject><subject>Dependovirus</subject><subject>Endocytosis - physiology</subject><subject>Fear</subject><subject>Female</subject><subject>Genetic Vectors</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Learning - physiology</subject><subject>Luciferases - genetics</subject><subject>Male</subject><subject>Maze Learning - physiology</subject><subject>MEF2 Transcription Factors</subject><subject>Memory</subject><subject>Memory - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Myogenic Regulatory Factors - genetics</subject><subject>Myogenic Regulatory Factors - physiology</subject><subject>Neurobiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Receptors, AMPA - physiology</subject><subject>Simplexvirus - genetics</subject><subject>Transcription factors</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl1rFTEQhoMotlbxH8iCF-rFHrPZfEwuS2m1UBHUXi_Z7OySsps95qN4_r05tFqPeCG5SJg88_K-wxDysqGbhrbw3vtN24B-RI4bwWXdKCYflzfVqpZMyCPyLMYbSqkSoJ-SI8YABHB9TK4_nV-wyuNkkrvFeVcFnPJsEsZqRhO881Pt_JAtDlVMIduUg5mr7WxictalXWX8UC24rGFXjWtYis7qn5Mno5kjvri_T8j1xfm3s4_11ecPl2enV7UVnKWaqYErMVDd90pyRiXolgpL2aA5g94yCdy21oBUAI0QAKqBvuQcUelR0PaEvL3T3Yb1e8aYusVFi_NsPK45dmUALZegQPwH2iopKRO6oK__Qm_WHHwJsqeKNUUlf6AmM2Pn_LimYOxetDttKWsa3oIs1OYfVDkDLs6uHkdX6gcN7w4aCpPwR5pMjrG7_PrlkH1zx9qwxhhw7LbBLSbsis-9Vei87_Z7UchX95Fyv-Dwm_u1CA_jieXLTxj-zHyo9RNltrtq</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Cole, Christina J</creator><creator>Mercaldo, Valentina</creator><creator>Restivo, Leonardo</creator><creator>Yiu, Adelaide P</creator><creator>Sekeres, Melanie J</creator><creator>Han, Jin-Hee</creator><creator>Vetere, Gisella</creator><creator>Pekar, Tetyana</creator><creator>Ross, P Joel</creator><creator>Neve, Rachael L</creator><creator>Frankland, Paul W</creator><creator>Josselyn, Sheena A</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120901</creationdate><title>MEF2 negatively regulates learning-induced structural plasticity and memory formation</title><author>Cole, Christina J ; Mercaldo, Valentina ; Restivo, Leonardo ; Yiu, Adelaide P ; Sekeres, Melanie J ; Han, Jin-Hee ; Vetere, Gisella ; Pekar, Tetyana ; Ross, P Joel ; Neve, Rachael L ; Frankland, Paul W ; Josselyn, Sheena A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-27d475d09bb76420689305c02d9428bc2684c3ca8678815588718b189fe79f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/208/200</topic><topic>631/378/1595</topic><topic>631/378/2591</topic><topic>Amygdala - metabolism</topic><topic>Amygdala - physiology</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blotting, Western</topic><topic>Conditioning (Psychology) - physiology</topic><topic>Dendritic Spines - physiology</topic><topic>Dependovirus</topic><topic>Endocytosis - physiology</topic><topic>Fear</topic><topic>Female</topic><topic>Genetic Vectors</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Learning - physiology</topic><topic>Luciferases - genetics</topic><topic>Male</topic><topic>Maze Learning - physiology</topic><topic>MEF2 Transcription Factors</topic><topic>Memory</topic><topic>Memory - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Myogenic Regulatory Factors - genetics</topic><topic>Myogenic Regulatory Factors - physiology</topic><topic>Neurobiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Receptors, AMPA - physiology</topic><topic>Simplexvirus - genetics</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cole, Christina J</creatorcontrib><creatorcontrib>Mercaldo, Valentina</creatorcontrib><creatorcontrib>Restivo, Leonardo</creatorcontrib><creatorcontrib>Yiu, Adelaide P</creatorcontrib><creatorcontrib>Sekeres, Melanie J</creatorcontrib><creatorcontrib>Han, Jin-Hee</creatorcontrib><creatorcontrib>Vetere, Gisella</creatorcontrib><creatorcontrib>Pekar, Tetyana</creatorcontrib><creatorcontrib>Ross, P Joel</creatorcontrib><creatorcontrib>Neve, Rachael L</creatorcontrib><creatorcontrib>Frankland, Paul W</creatorcontrib><creatorcontrib>Josselyn, Sheena A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cole, Christina J</au><au>Mercaldo, Valentina</au><au>Restivo, Leonardo</au><au>Yiu, Adelaide P</au><au>Sekeres, Melanie J</au><au>Han, Jin-Hee</au><au>Vetere, Gisella</au><au>Pekar, Tetyana</au><au>Ross, P Joel</au><au>Neve, Rachael L</au><au>Frankland, Paul W</au><au>Josselyn, Sheena A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MEF2 negatively regulates learning-induced structural plasticity and memory formation</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>15</volume><issue>9</issue><spage>1255</spage><epage>1264</epage><pages>1255-1264</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>The authors report that endogenous myocyte enhance factor 2 (MEF2) levels affect spatial and fear memory formation in adult mice. MEF2-induced memory disruption was rescued by interfering with AMPA receptor endocytosis. Memory formation is thought to be mediated by dendritic-spine growth and restructuring. Myocyte enhancer factor 2 (MEF2) restricts spine growth in vitro , suggesting that this transcription factor negatively regulates the spine remodeling necessary for memory formation. Here we show that memory formation in adult mice was associated with changes in endogenous MEF2 levels and function. Locally and acutely increasing MEF2 function in the dentate gyrus blocked both learning-induced increases in spine density and spatial-memory formation. Increasing MEF2 function in amygdala disrupted fear-memory formation. We rescued MEF2-induced memory disruption by interfering with AMPA receptor endocytosis, suggesting that AMPA receptor trafficking is a key mechanism underlying the effects of MEF2. In contrast, decreasing MEF2 function in dentate gyrus and amygdala facilitated the formation of spatial and fear memory, respectively. These bidirectional effects indicate that MEF2 is a key regulator of plasticity and that relieving the suppressive effects of MEF2-mediated transcription permits memory formation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>22885849</pmid><doi>10.1038/nn.3189</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2012-09, Vol.15 (9), p.1255-1264
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_1093468785
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 631/208/200
631/378/1595
631/378/2591
Amygdala - metabolism
Amygdala - physiology
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Blotting, Western
Conditioning (Psychology) - physiology
Dendritic Spines - physiology
Dependovirus
Endocytosis - physiology
Fear
Female
Genetic Vectors
Hippocampus - cytology
Hippocampus - physiology
Immunohistochemistry
In Situ Hybridization, Fluorescence
Learning - physiology
Luciferases - genetics
Male
Maze Learning - physiology
MEF2 Transcription Factors
Memory
Memory - physiology
Mice
Mice, Inbred C57BL
Myogenic Regulatory Factors - genetics
Myogenic Regulatory Factors - physiology
Neurobiology
Neuronal Plasticity - physiology
Neurons - physiology
Neuroplasticity
Neurosciences
Physiological aspects
Proteins
Receptors, AMPA - physiology
Simplexvirus - genetics
Transcription factors
title MEF2 negatively regulates learning-induced structural plasticity and memory formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MEF2%20negatively%20regulates%20learning-induced%20structural%20plasticity%20and%20memory%20formation&rft.jtitle=Nature%20neuroscience&rft.au=Cole,%20Christina%20J&rft.date=2012-09-01&rft.volume=15&rft.issue=9&rft.spage=1255&rft.epage=1264&rft.pages=1255-1264&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3189&rft_dat=%3Cgale_proqu%3EA302114386%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039427064&rft_id=info:pmid/22885849&rft_galeid=A302114386&rfr_iscdi=true