Evaluation and Bias Correction of Regional Climate Model Results Using Model Evaluation Measures

For the assessment of regional climate change the reliability of the regional climate models needs to be known. The main goal of this paper is to evaluate the quality of climate model data that are used for impact research. Temperature, precipitation, total cloud cover, relative humidity, and wind s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology and climatology 2012-09, Vol.51 (9), p.1670-1684
Hauptverfasser: Schoetter, Robert, Hoffmann, Peter, Rechid, Diana, Schlünzen, K. Heinke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1684
container_issue 9
container_start_page 1670
container_title Journal of applied meteorology and climatology
container_volume 51
creator Schoetter, Robert
Hoffmann, Peter
Rechid, Diana
Schlünzen, K. Heinke
description For the assessment of regional climate change the reliability of the regional climate models needs to be known. The main goal of this paper is to evaluate the quality of climate model data that are used for impact research. Temperature, precipitation, total cloud cover, relative humidity, and wind speed simulated by the regional climate models Climate Local Model (CLM) and Regional Model (REMO) are evaluated for the metropolitan region of Hamburg in northern Germany for the period 1961–2000. The same evaluation is performed for the global climate model ECHAM5 that is used to force the regional climate models. The evaluation is based on comparison of the simulated and observed climatological annual cycles and probability density functions of daily averages. Several model evaluation measures are calculated to assure an objective model evaluation. As a very selective model evaluation measure, the hit rate of the percentiles is introduced for the evaluation of daily averages. The influence of interannual climate variability is considered by determining confidence intervals for the model evaluation measures by bootstrap resampling. Evaluation shows that, with some exceptions, temperature and wind speed are well simulated by the climate models; whereas considerable biases are found for relative humidity, total cloud cover, and precipitation, although not for all models in all seasons. It is shown that model evaluation measures can be used to decide for which meteorological parameters a bias correction is reasonable.
doi_str_mv 10.1175/JAMC-D-11-0161.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1093467627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26175233</jstor_id><sourcerecordid>26175233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-291931fcf6fd71ea8b433ff66baae7cb350c0134e392d3bafe9fbc289774abc73</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYso-Ny7EQoiuKnm1aRdascnDoLoOt5mEukQG81tBf-9GWcQceEqh5PvHm5ysmyfkhNKVXl6ezZtiklBaUGopCd0LduiZVkVleBs_UczsZltI84JEUKpcit7vvgAP8LQhT6Hfpafd4B5E2K05tsLLn-wL0mBzxvfvcJg82mYWZ9sHP2A-RN2_cvK-xU2tYBjtLibbTjwaPdW5072dHnx2FwXd_dXN83ZXWEEk0PBalpz6oyTbqaohaoVnDsnZQtglWl5SQyhXFhesxlvwdnatYZVtVICWqP4Tna8zH2L4X20OOjXDo31HnobRtSU1FxIJdkCPfyDzsMY0wtRs4qVJSeMVf9RlIiSy7S3SBRZUiYGxGidfovpl-JngvSiGL0oRk-S1otiNE0jR6tgQAPeRehNhz9zTHLByPeaB0tujkOIv-5TKuOcfwFC_paf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1045364264</pqid></control><display><type>article</type><title>Evaluation and Bias Correction of Regional Climate Model Results Using Model Evaluation Measures</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Schoetter, Robert ; Hoffmann, Peter ; Rechid, Diana ; Schlünzen, K. Heinke</creator><creatorcontrib>Schoetter, Robert ; Hoffmann, Peter ; Rechid, Diana ; Schlünzen, K. Heinke</creatorcontrib><description>For the assessment of regional climate change the reliability of the regional climate models needs to be known. The main goal of this paper is to evaluate the quality of climate model data that are used for impact research. Temperature, precipitation, total cloud cover, relative humidity, and wind speed simulated by the regional climate models Climate Local Model (CLM) and Regional Model (REMO) are evaluated for the metropolitan region of Hamburg in northern Germany for the period 1961–2000. The same evaluation is performed for the global climate model ECHAM5 that is used to force the regional climate models. The evaluation is based on comparison of the simulated and observed climatological annual cycles and probability density functions of daily averages. Several model evaluation measures are calculated to assure an objective model evaluation. As a very selective model evaluation measure, the hit rate of the percentiles is introduced for the evaluation of daily averages. The influence of interannual climate variability is considered by determining confidence intervals for the model evaluation measures by bootstrap resampling. Evaluation shows that, with some exceptions, temperature and wind speed are well simulated by the climate models; whereas considerable biases are found for relative humidity, total cloud cover, and precipitation, although not for all models in all seasons. It is shown that model evaluation measures can be used to decide for which meteorological parameters a bias correction is reasonable.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/JAMC-D-11-0161.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Annual cycles ; Annual variations ; Arithmetic mean ; Bias ; Chlorofluorocarbons ; Climate change ; Climate models ; Climate variability ; Climatology ; Climatology. Bioclimatology. Climate change ; Cloud cover ; Computer centers ; Confidence intervals ; Data processing ; Datasets ; Earth, ocean, space ; Evaluation ; Exact sciences and technology ; External geophysics ; General circulation models ; Geophysics. Techniques, methods, instrumentation and models ; Global climate ; Global climate models ; Humidity ; Meteorological parameters ; Meteorology ; Metropolitan areas ; Modeling ; Modelling ; Precipitation ; Probability density functions ; Probability theory ; Regional analysis ; Regional climate models ; Regional climates ; Relative humidity ; Resampling ; Simulation ; Simulations ; Statistical analysis ; Studies ; Temperature ; Time series ; Wind ; Wind speed ; Wind velocity</subject><ispartof>Journal of applied meteorology and climatology, 2012-09, Vol.51 (9), p.1670-1684</ispartof><rights>2012 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Sep 2012</rights><rights>Copyright American Meteorological Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-291931fcf6fd71ea8b433ff66baae7cb350c0134e392d3bafe9fbc289774abc73</citedby><cites>FETCH-LOGICAL-c426t-291931fcf6fd71ea8b433ff66baae7cb350c0134e392d3bafe9fbc289774abc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26175233$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26175233$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,3670,27907,27908,58000,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26342027$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schoetter, Robert</creatorcontrib><creatorcontrib>Hoffmann, Peter</creatorcontrib><creatorcontrib>Rechid, Diana</creatorcontrib><creatorcontrib>Schlünzen, K. Heinke</creatorcontrib><title>Evaluation and Bias Correction of Regional Climate Model Results Using Model Evaluation Measures</title><title>Journal of applied meteorology and climatology</title><description>For the assessment of regional climate change the reliability of the regional climate models needs to be known. The main goal of this paper is to evaluate the quality of climate model data that are used for impact research. Temperature, precipitation, total cloud cover, relative humidity, and wind speed simulated by the regional climate models Climate Local Model (CLM) and Regional Model (REMO) are evaluated for the metropolitan region of Hamburg in northern Germany for the period 1961–2000. The same evaluation is performed for the global climate model ECHAM5 that is used to force the regional climate models. The evaluation is based on comparison of the simulated and observed climatological annual cycles and probability density functions of daily averages. Several model evaluation measures are calculated to assure an objective model evaluation. As a very selective model evaluation measure, the hit rate of the percentiles is introduced for the evaluation of daily averages. The influence of interannual climate variability is considered by determining confidence intervals for the model evaluation measures by bootstrap resampling. Evaluation shows that, with some exceptions, temperature and wind speed are well simulated by the climate models; whereas considerable biases are found for relative humidity, total cloud cover, and precipitation, although not for all models in all seasons. It is shown that model evaluation measures can be used to decide for which meteorological parameters a bias correction is reasonable.</description><subject>Annual cycles</subject><subject>Annual variations</subject><subject>Arithmetic mean</subject><subject>Bias</subject><subject>Chlorofluorocarbons</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climate variability</subject><subject>Climatology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Cloud cover</subject><subject>Computer centers</subject><subject>Confidence intervals</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Earth, ocean, space</subject><subject>Evaluation</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>General circulation models</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Humidity</subject><subject>Meteorological parameters</subject><subject>Meteorology</subject><subject>Metropolitan areas</subject><subject>Modeling</subject><subject>Modelling</subject><subject>Precipitation</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Regional analysis</subject><subject>Regional climate models</subject><subject>Regional climates</subject><subject>Relative humidity</subject><subject>Resampling</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Temperature</subject><subject>Time series</subject><subject>Wind</subject><subject>Wind speed</subject><subject>Wind velocity</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtLxDAUhYso-Ny7EQoiuKnm1aRdascnDoLoOt5mEukQG81tBf-9GWcQceEqh5PvHm5ysmyfkhNKVXl6ezZtiklBaUGopCd0LduiZVkVleBs_UczsZltI84JEUKpcit7vvgAP8LQhT6Hfpafd4B5E2K05tsLLn-wL0mBzxvfvcJg82mYWZ9sHP2A-RN2_cvK-xU2tYBjtLibbTjwaPdW5072dHnx2FwXd_dXN83ZXWEEk0PBalpz6oyTbqaohaoVnDsnZQtglWl5SQyhXFhesxlvwdnatYZVtVICWqP4Tna8zH2L4X20OOjXDo31HnobRtSU1FxIJdkCPfyDzsMY0wtRs4qVJSeMVf9RlIiSy7S3SBRZUiYGxGidfovpl-JngvSiGL0oRk-S1otiNE0jR6tgQAPeRehNhz9zTHLByPeaB0tujkOIv-5TKuOcfwFC_paf</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Schoetter, Robert</creator><creator>Hoffmann, Peter</creator><creator>Rechid, Diana</creator><creator>Schlünzen, K. Heinke</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20120901</creationdate><title>Evaluation and Bias Correction of Regional Climate Model Results Using Model Evaluation Measures</title><author>Schoetter, Robert ; Hoffmann, Peter ; Rechid, Diana ; Schlünzen, K. Heinke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-291931fcf6fd71ea8b433ff66baae7cb350c0134e392d3bafe9fbc289774abc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Annual cycles</topic><topic>Annual variations</topic><topic>Arithmetic mean</topic><topic>Bias</topic><topic>Chlorofluorocarbons</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climate variability</topic><topic>Climatology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Cloud cover</topic><topic>Computer centers</topic><topic>Confidence intervals</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Earth, ocean, space</topic><topic>Evaluation</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>General circulation models</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Humidity</topic><topic>Meteorological parameters</topic><topic>Meteorology</topic><topic>Metropolitan areas</topic><topic>Modeling</topic><topic>Modelling</topic><topic>Precipitation</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Regional analysis</topic><topic>Regional climate models</topic><topic>Regional climates</topic><topic>Relative humidity</topic><topic>Resampling</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Temperature</topic><topic>Time series</topic><topic>Wind</topic><topic>Wind speed</topic><topic>Wind velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schoetter, Robert</creatorcontrib><creatorcontrib>Hoffmann, Peter</creatorcontrib><creatorcontrib>Rechid, Diana</creatorcontrib><creatorcontrib>Schlünzen, K. Heinke</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schoetter, Robert</au><au>Hoffmann, Peter</au><au>Rechid, Diana</au><au>Schlünzen, K. Heinke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation and Bias Correction of Regional Climate Model Results Using Model Evaluation Measures</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>51</volume><issue>9</issue><spage>1670</spage><epage>1684</epage><pages>1670-1684</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><coden>JOAMEZ</coden><abstract>For the assessment of regional climate change the reliability of the regional climate models needs to be known. The main goal of this paper is to evaluate the quality of climate model data that are used for impact research. Temperature, precipitation, total cloud cover, relative humidity, and wind speed simulated by the regional climate models Climate Local Model (CLM) and Regional Model (REMO) are evaluated for the metropolitan region of Hamburg in northern Germany for the period 1961–2000. The same evaluation is performed for the global climate model ECHAM5 that is used to force the regional climate models. The evaluation is based on comparison of the simulated and observed climatological annual cycles and probability density functions of daily averages. Several model evaluation measures are calculated to assure an objective model evaluation. As a very selective model evaluation measure, the hit rate of the percentiles is introduced for the evaluation of daily averages. The influence of interannual climate variability is considered by determining confidence intervals for the model evaluation measures by bootstrap resampling. Evaluation shows that, with some exceptions, temperature and wind speed are well simulated by the climate models; whereas considerable biases are found for relative humidity, total cloud cover, and precipitation, although not for all models in all seasons. It is shown that model evaluation measures can be used to decide for which meteorological parameters a bias correction is reasonable.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/JAMC-D-11-0161.1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology and climatology, 2012-09, Vol.51 (9), p.1670-1684
issn 1558-8424
1558-8432
language eng
recordid cdi_proquest_miscellaneous_1093467627
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Alma/SFX Local Collection
subjects Annual cycles
Annual variations
Arithmetic mean
Bias
Chlorofluorocarbons
Climate change
Climate models
Climate variability
Climatology
Climatology. Bioclimatology. Climate change
Cloud cover
Computer centers
Confidence intervals
Data processing
Datasets
Earth, ocean, space
Evaluation
Exact sciences and technology
External geophysics
General circulation models
Geophysics. Techniques, methods, instrumentation and models
Global climate
Global climate models
Humidity
Meteorological parameters
Meteorology
Metropolitan areas
Modeling
Modelling
Precipitation
Probability density functions
Probability theory
Regional analysis
Regional climate models
Regional climates
Relative humidity
Resampling
Simulation
Simulations
Statistical analysis
Studies
Temperature
Time series
Wind
Wind speed
Wind velocity
title Evaluation and Bias Correction of Regional Climate Model Results Using Model Evaluation Measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20and%20Bias%20Correction%20of%20Regional%20Climate%20Model%20Results%20Using%20Model%20Evaluation%20Measures&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Schoetter,%20Robert&rft.date=2012-09-01&rft.volume=51&rft.issue=9&rft.spage=1670&rft.epage=1684&rft.pages=1670-1684&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/JAMC-D-11-0161.1&rft_dat=%3Cjstor_proqu%3E26175233%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1045364264&rft_id=info:pmid/&rft_jstor_id=26175233&rfr_iscdi=true