Regular and Platform Switching: Bone Stress Analysis Varying Implant Type

Purpose: This study aimed to evaluate stress distribution on peri‐implant bone simulating the influence of platform switching in external and internal hexagon implants using three‐dimensional finite element analysis. Materials and Methods: Four mathematical models of a central incisor supported by a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of prosthodontics 2012-04, Vol.21 (3), p.160-166
Hauptverfasser: Gurgel-Juarez, Nália Cecília, de Almeida, Erika Oliveira, Rocha, Eduardo Passos, Júnior, Amílcar Chagas Freitas, Anchieta, Rodolfo Bruniera, de Vargas, Luis Carlos Merçon, Kina, Sidney, França, Fabiana Mantovani Gomes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 3
container_start_page 160
container_title Journal of prosthodontics
container_volume 21
creator Gurgel-Juarez, Nália Cecília
de Almeida, Erika Oliveira
Rocha, Eduardo Passos
Júnior, Amílcar Chagas Freitas
Anchieta, Rodolfo Bruniera
de Vargas, Luis Carlos Merçon
Kina, Sidney
França, Fabiana Mantovani Gomes
description Purpose: This study aimed to evaluate stress distribution on peri‐implant bone simulating the influence of platform switching in external and internal hexagon implants using three‐dimensional finite element analysis. Materials and Methods: Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm × 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (σmax) and minimum (σmin) principal stress, equivalent von Mises stress (σvM), and maximum principal elastic strain (εmax) values were evaluated for the cortical and trabecular bone. Results: For cortical bone, the highest stress values (σmax and σvm) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For εmax, IR showed the highest stress (5.46e‐003), followed by IS (5.23e‐003), ER (5.22e‐003), and ES (3.67e‐003). For the trabecular bone, the highest stress values (σmax) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For σvM, the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For εmax, ER showed the highest stress (5.5e‐003), followed by ES (5.43e‐003), IS (3.75e‐003), and IR (3.15e‐003). Conclusion: The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon implants. In addition, the external hexagon implants showed less stress concentration in the regular and switching platforms in comparison to the internal hexagon implants.
doi_str_mv 10.1111/j.1532-849X.2011.00801.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1093458526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1015093159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4401-d298b867978819697c5c954a1c1636a2623c8f69b5d90e8c37b946302f05a3e83</originalsourceid><addsrcrecordid>eNqNkMtOAyEUhonReH8Fw9LNjFwGBkxceLfaaG3rZUcoZerUuVSYxvbtpVa7LhtOcr7_HPgAgBjFOJyTcYwZJZFI5HtMEMYxQgLheLYBdleNzVAjJiOZ4PcdsOf9GAWSCbwNdgihKUkZ3wWtrh1NC-2groawU-gmq10Je995Yz7yanQKL-rKwl7jrPfwvNLF3Ocevmo3D13YKieFrhrYn0_sAdjKdOHt4d-9D15urvuXd1H76bZ1ed6OTJIgHA2JFAPBU5kKgSWXqWFGskRjgznlmnBCjci4HLChRFYYmg5kwikiGWKaWkH3wfFy7sTVX1PrG1Xm3tgiPMTWU68wkjRhghG-BopZoDGTARVL1Ljae2czNXF5Gb4ZILVwrsZqoVYt1KqFc_XrXM1C9Ohvy3RQ2uEq-C85AGdL4Dsv7Hztwer-qdMNVchHy3zuGztb5bX7VDylKVNvj7eq136-uujhB9WhP5QinR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015093159</pqid></control><display><type>article</type><title>Regular and Platform Switching: Bone Stress Analysis Varying Implant Type</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Gurgel-Juarez, Nália Cecília ; de Almeida, Erika Oliveira ; Rocha, Eduardo Passos ; Júnior, Amílcar Chagas Freitas ; Anchieta, Rodolfo Bruniera ; de Vargas, Luis Carlos Merçon ; Kina, Sidney ; França, Fabiana Mantovani Gomes</creator><creatorcontrib>Gurgel-Juarez, Nália Cecília ; de Almeida, Erika Oliveira ; Rocha, Eduardo Passos ; Júnior, Amílcar Chagas Freitas ; Anchieta, Rodolfo Bruniera ; de Vargas, Luis Carlos Merçon ; Kina, Sidney ; França, Fabiana Mantovani Gomes</creatorcontrib><description>Purpose: This study aimed to evaluate stress distribution on peri‐implant bone simulating the influence of platform switching in external and internal hexagon implants using three‐dimensional finite element analysis. Materials and Methods: Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm × 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (σmax) and minimum (σmin) principal stress, equivalent von Mises stress (σvM), and maximum principal elastic strain (εmax) values were evaluated for the cortical and trabecular bone. Results: For cortical bone, the highest stress values (σmax and σvm) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For εmax, IR showed the highest stress (5.46e‐003), followed by IS (5.23e‐003), ER (5.22e‐003), and ES (3.67e‐003). For the trabecular bone, the highest stress values (σmax) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For σvM, the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For εmax, ER showed the highest stress (5.5e‐003), followed by ES (5.43e‐003), IS (3.75e‐003), and IR (3.15e‐003). Conclusion: The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon implants. In addition, the external hexagon implants showed less stress concentration in the regular and switching platforms in comparison to the internal hexagon implants.</description><identifier>ISSN: 1059-941X</identifier><identifier>EISSN: 1532-849X</identifier><identifier>DOI: 10.1111/j.1532-849X.2011.00801.x</identifier><identifier>PMID: 22372756</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Biomechanical Phenomena ; bone ; Bone (cortical) ; Computer Simulation ; Crowns ; Dental Abutments - classification ; Dental Implant-Abutment Design - methods ; Dental Implants - classification ; Dental Porcelain - chemistry ; Dental Prosthesis Design ; Dental Stress Analysis ; Dentistry ; Elastic Modulus ; Finite Element Analysis ; Humans ; Imaging, Three-Dimensional - methods ; Implant dentistry ; Incisor ; loading ; Materials Testing ; Maxilla - anatomy &amp; histology ; Models, Biological ; Osseointegration - physiology ; Resin Cements - chemistry ; stress ; Stress, Mechanical ; Surface Properties</subject><ispartof>Journal of prosthodontics, 2012-04, Vol.21 (3), p.160-166</ispartof><rights>2012 by the American College of Prosthodontists</rights><rights>2012 by the American College of Prosthodontists.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4401-d298b867978819697c5c954a1c1636a2623c8f69b5d90e8c37b946302f05a3e83</citedby><cites>FETCH-LOGICAL-c4401-d298b867978819697c5c954a1c1636a2623c8f69b5d90e8c37b946302f05a3e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1532-849X.2011.00801.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1532-849X.2011.00801.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22372756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gurgel-Juarez, Nália Cecília</creatorcontrib><creatorcontrib>de Almeida, Erika Oliveira</creatorcontrib><creatorcontrib>Rocha, Eduardo Passos</creatorcontrib><creatorcontrib>Júnior, Amílcar Chagas Freitas</creatorcontrib><creatorcontrib>Anchieta, Rodolfo Bruniera</creatorcontrib><creatorcontrib>de Vargas, Luis Carlos Merçon</creatorcontrib><creatorcontrib>Kina, Sidney</creatorcontrib><creatorcontrib>França, Fabiana Mantovani Gomes</creatorcontrib><title>Regular and Platform Switching: Bone Stress Analysis Varying Implant Type</title><title>Journal of prosthodontics</title><addtitle>J Prosthodont</addtitle><description>Purpose: This study aimed to evaluate stress distribution on peri‐implant bone simulating the influence of platform switching in external and internal hexagon implants using three‐dimensional finite element analysis. Materials and Methods: Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm × 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (σmax) and minimum (σmin) principal stress, equivalent von Mises stress (σvM), and maximum principal elastic strain (εmax) values were evaluated for the cortical and trabecular bone. Results: For cortical bone, the highest stress values (σmax and σvm) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For εmax, IR showed the highest stress (5.46e‐003), followed by IS (5.23e‐003), ER (5.22e‐003), and ES (3.67e‐003). For the trabecular bone, the highest stress values (σmax) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For σvM, the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For εmax, ER showed the highest stress (5.5e‐003), followed by ES (5.43e‐003), IS (3.75e‐003), and IR (3.15e‐003). Conclusion: The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon implants. In addition, the external hexagon implants showed less stress concentration in the regular and switching platforms in comparison to the internal hexagon implants.</description><subject>Biomechanical Phenomena</subject><subject>bone</subject><subject>Bone (cortical)</subject><subject>Computer Simulation</subject><subject>Crowns</subject><subject>Dental Abutments - classification</subject><subject>Dental Implant-Abutment Design - methods</subject><subject>Dental Implants - classification</subject><subject>Dental Porcelain - chemistry</subject><subject>Dental Prosthesis Design</subject><subject>Dental Stress Analysis</subject><subject>Dentistry</subject><subject>Elastic Modulus</subject><subject>Finite Element Analysis</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Implant dentistry</subject><subject>Incisor</subject><subject>loading</subject><subject>Materials Testing</subject><subject>Maxilla - anatomy &amp; histology</subject><subject>Models, Biological</subject><subject>Osseointegration - physiology</subject><subject>Resin Cements - chemistry</subject><subject>stress</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><issn>1059-941X</issn><issn>1532-849X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOAyEUhonReH8Fw9LNjFwGBkxceLfaaG3rZUcoZerUuVSYxvbtpVa7LhtOcr7_HPgAgBjFOJyTcYwZJZFI5HtMEMYxQgLheLYBdleNzVAjJiOZ4PcdsOf9GAWSCbwNdgihKUkZ3wWtrh1NC-2groawU-gmq10Je995Yz7yanQKL-rKwl7jrPfwvNLF3Ocevmo3D13YKieFrhrYn0_sAdjKdOHt4d-9D15urvuXd1H76bZ1ed6OTJIgHA2JFAPBU5kKgSWXqWFGskRjgznlmnBCjci4HLChRFYYmg5kwikiGWKaWkH3wfFy7sTVX1PrG1Xm3tgiPMTWU68wkjRhghG-BopZoDGTARVL1Ljae2czNXF5Gb4ZILVwrsZqoVYt1KqFc_XrXM1C9Ohvy3RQ2uEq-C85AGdL4Dsv7Hztwer-qdMNVchHy3zuGztb5bX7VDylKVNvj7eq136-uujhB9WhP5QinR4</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Gurgel-Juarez, Nália Cecília</creator><creator>de Almeida, Erika Oliveira</creator><creator>Rocha, Eduardo Passos</creator><creator>Júnior, Amílcar Chagas Freitas</creator><creator>Anchieta, Rodolfo Bruniera</creator><creator>de Vargas, Luis Carlos Merçon</creator><creator>Kina, Sidney</creator><creator>França, Fabiana Mantovani Gomes</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope></search><sort><creationdate>201204</creationdate><title>Regular and Platform Switching: Bone Stress Analysis Varying Implant Type</title><author>Gurgel-Juarez, Nália Cecília ; de Almeida, Erika Oliveira ; Rocha, Eduardo Passos ; Júnior, Amílcar Chagas Freitas ; Anchieta, Rodolfo Bruniera ; de Vargas, Luis Carlos Merçon ; Kina, Sidney ; França, Fabiana Mantovani Gomes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4401-d298b867978819697c5c954a1c1636a2623c8f69b5d90e8c37b946302f05a3e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biomechanical Phenomena</topic><topic>bone</topic><topic>Bone (cortical)</topic><topic>Computer Simulation</topic><topic>Crowns</topic><topic>Dental Abutments - classification</topic><topic>Dental Implant-Abutment Design - methods</topic><topic>Dental Implants - classification</topic><topic>Dental Porcelain - chemistry</topic><topic>Dental Prosthesis Design</topic><topic>Dental Stress Analysis</topic><topic>Dentistry</topic><topic>Elastic Modulus</topic><topic>Finite Element Analysis</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Implant dentistry</topic><topic>Incisor</topic><topic>loading</topic><topic>Materials Testing</topic><topic>Maxilla - anatomy &amp; histology</topic><topic>Models, Biological</topic><topic>Osseointegration - physiology</topic><topic>Resin Cements - chemistry</topic><topic>stress</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurgel-Juarez, Nália Cecília</creatorcontrib><creatorcontrib>de Almeida, Erika Oliveira</creatorcontrib><creatorcontrib>Rocha, Eduardo Passos</creatorcontrib><creatorcontrib>Júnior, Amílcar Chagas Freitas</creatorcontrib><creatorcontrib>Anchieta, Rodolfo Bruniera</creatorcontrib><creatorcontrib>de Vargas, Luis Carlos Merçon</creatorcontrib><creatorcontrib>Kina, Sidney</creatorcontrib><creatorcontrib>França, Fabiana Mantovani Gomes</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><jtitle>Journal of prosthodontics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurgel-Juarez, Nália Cecília</au><au>de Almeida, Erika Oliveira</au><au>Rocha, Eduardo Passos</au><au>Júnior, Amílcar Chagas Freitas</au><au>Anchieta, Rodolfo Bruniera</au><au>de Vargas, Luis Carlos Merçon</au><au>Kina, Sidney</au><au>França, Fabiana Mantovani Gomes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regular and Platform Switching: Bone Stress Analysis Varying Implant Type</atitle><jtitle>Journal of prosthodontics</jtitle><addtitle>J Prosthodont</addtitle><date>2012-04</date><risdate>2012</risdate><volume>21</volume><issue>3</issue><spage>160</spage><epage>166</epage><pages>160-166</pages><issn>1059-941X</issn><eissn>1532-849X</eissn><abstract>Purpose: This study aimed to evaluate stress distribution on peri‐implant bone simulating the influence of platform switching in external and internal hexagon implants using three‐dimensional finite element analysis. Materials and Methods: Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm × 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (σmax) and minimum (σmin) principal stress, equivalent von Mises stress (σvM), and maximum principal elastic strain (εmax) values were evaluated for the cortical and trabecular bone. Results: For cortical bone, the highest stress values (σmax and σvm) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For εmax, IR showed the highest stress (5.46e‐003), followed by IS (5.23e‐003), ER (5.22e‐003), and ES (3.67e‐003). For the trabecular bone, the highest stress values (σmax) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For σvM, the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For εmax, ER showed the highest stress (5.5e‐003), followed by ES (5.43e‐003), IS (3.75e‐003), and IR (3.15e‐003). Conclusion: The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon implants. In addition, the external hexagon implants showed less stress concentration in the regular and switching platforms in comparison to the internal hexagon implants.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>22372756</pmid><doi>10.1111/j.1532-849X.2011.00801.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-941X
ispartof Journal of prosthodontics, 2012-04, Vol.21 (3), p.160-166
issn 1059-941X
1532-849X
language eng
recordid cdi_proquest_miscellaneous_1093458526
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Biomechanical Phenomena
bone
Bone (cortical)
Computer Simulation
Crowns
Dental Abutments - classification
Dental Implant-Abutment Design - methods
Dental Implants - classification
Dental Porcelain - chemistry
Dental Prosthesis Design
Dental Stress Analysis
Dentistry
Elastic Modulus
Finite Element Analysis
Humans
Imaging, Three-Dimensional - methods
Implant dentistry
Incisor
loading
Materials Testing
Maxilla - anatomy & histology
Models, Biological
Osseointegration - physiology
Resin Cements - chemistry
stress
Stress, Mechanical
Surface Properties
title Regular and Platform Switching: Bone Stress Analysis Varying Implant Type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regular%20and%20Platform%20Switching:%20Bone%20Stress%20Analysis%20Varying%20Implant%20Type&rft.jtitle=Journal%20of%20prosthodontics&rft.au=Gurgel-Juarez,%20N%C3%A1lia%20Cec%C3%ADlia&rft.date=2012-04&rft.volume=21&rft.issue=3&rft.spage=160&rft.epage=166&rft.pages=160-166&rft.issn=1059-941X&rft.eissn=1532-849X&rft_id=info:doi/10.1111/j.1532-849X.2011.00801.x&rft_dat=%3Cproquest_cross%3E1015093159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015093159&rft_id=info:pmid/22372756&rfr_iscdi=true