Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage

Genomic assay of sperm cell RNA provides insight into functional control, modes of regulation, and contributions of male gametes to double fertilization. Sperm cells of rice (Oryza sativa) were isolated from field-grown, disease-free plants and RNA was processed for use with the full-genome Affymetr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2012-08, Vol.195 (3), p.560-573
Hauptverfasser: Russell, Scott D., Gou, Xiaoping, Wong, Chui E., Wang, Xinkun, Yuan, Tong, Wei, Xiaoping, Bhalla, Prem L., Singh, Mohan B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 573
container_issue 3
container_start_page 560
container_title The New phytologist
container_volume 195
creator Russell, Scott D.
Gou, Xiaoping
Wong, Chui E.
Wang, Xinkun
Yuan, Tong
Wei, Xiaoping
Bhalla, Prem L.
Singh, Mohan B.
description Genomic assay of sperm cell RNA provides insight into functional control, modes of regulation, and contributions of male gametes to double fertilization. Sperm cells of rice (Oryza sativa) were isolated from field-grown, disease-free plants and RNA was processed for use with the full-genome Affymetrix microarray. Comparison with Gene Expression Omnibus (GEO) reference arrays confirmed expressionally distinct gene profiles. A total of 10 732 distinct gene sequences were detected in sperm cells, of which 1668 were not expressed in pollen or seedlings. Pathways enriched in male germ cells included ubiquitin-mediated pathways, pathways involved in chromatin modeling including histones, histone modification and nonhistone epigenetic modification, and pathways related to RNAi and gene silencing. Genome-wide expression patterns in angiosperm sperm cells indicate common and divergent themes in the male germline that appear to be largely self-regulating through highly up-regulated chromatin modification pathways. A core of highly conserved genes appear common to all sperm cells, but evidence is still emerging that another class of genes have diverged in expression between monocots and dicots since their divergence. Sperm cell transcripts present at fusion may be transmitted through plasmogamy during double fertilization to effect immediate post-fertilization expression of early embryo and (or) endosperm development.
doi_str_mv 10.1111/j.1469-8137.2012.04199.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1093453427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.195.3.560</jstor_id><sourcerecordid>newphytologist.195.3.560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5629-c4ef636c19fd39392e4309f97c783a9c887be11161e1702dc1c44ad1123b87253</originalsourceid><addsrcrecordid>eNqNks1u1DAUhS0EokPhFZAlNmwS_Bc7XrBAVWmRKmABEjsr49xMPXLsYGc6nSVvjsOUWbBA9caW_J1z7_UxQpiSmpb1bltTIXXVUq5qRiiriaBa1_dP0Op08RStCGFtJYX8cYZe5LwlhOhGsufojDFFpW7YCv26ghBHZ_GU4uC8CxscB5ycBZwnSCO24D2eUxeyTW6aM05wB53P2MaQId1Bj7vQ497l2QU7Y_AwQiicC3i-BTz4uIe0-E6-CzMeOw94sziXYtBt4CV6NhQ_ePWwn6PvHy-_XVxXN1-uPl18uKls6VlXVsAgubRUDz3XXDMQnOhBK6ta3mnbtmoN5W0kBaoI6y21QnQ9pYyvW8Uafo7eHn3LpD93kGczurxM1wWIu2wo0Vw0XDD1CJQJoVomeUHf_INu4y6FMohhDeVM6ZbL_1FUcMapbMnSYXukbIo5JxjMlNzYpUMpaJbczdYs8ZolXrPkbv7kbu6L9PVDgd16hP4k_Bt0Ad4fgb3zcHi0sfn89Xo5FX111G_zHNNJH2A_3R7m6OOmfABDdWO4aSThvwHebcu3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1432316805</pqid></control><display><type>article</type><title>Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Russell, Scott D. ; Gou, Xiaoping ; Wong, Chui E. ; Wang, Xinkun ; Yuan, Tong ; Wei, Xiaoping ; Bhalla, Prem L. ; Singh, Mohan B.</creator><creatorcontrib>Russell, Scott D. ; Gou, Xiaoping ; Wong, Chui E. ; Wang, Xinkun ; Yuan, Tong ; Wei, Xiaoping ; Bhalla, Prem L. ; Singh, Mohan B.</creatorcontrib><description>Genomic assay of sperm cell RNA provides insight into functional control, modes of regulation, and contributions of male gametes to double fertilization. Sperm cells of rice (Oryza sativa) were isolated from field-grown, disease-free plants and RNA was processed for use with the full-genome Affymetrix microarray. Comparison with Gene Expression Omnibus (GEO) reference arrays confirmed expressionally distinct gene profiles. A total of 10 732 distinct gene sequences were detected in sperm cells, of which 1668 were not expressed in pollen or seedlings. Pathways enriched in male germ cells included ubiquitin-mediated pathways, pathways involved in chromatin modeling including histones, histone modification and nonhistone epigenetic modification, and pathways related to RNAi and gene silencing. Genome-wide expression patterns in angiosperm sperm cells indicate common and divergent themes in the male germline that appear to be largely self-regulating through highly up-regulated chromatin modification pathways. A core of highly conserved genes appear common to all sperm cells, but evidence is still emerging that another class of genes have diverged in expression between monocots and dicots since their divergence. Sperm cell transcripts present at fusion may be transmitted through plasmogamy during double fertilization to effect immediate post-fertilization expression of early embryo and (or) endosperm development.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2012.04199.x</identifier><identifier>PMID: 22716952</identifier><language>eng</language><publisher>Oxford, UK: New Phytologist Trust</publisher><subject>angiosperm sperm cells ; Animal embryos ; Biological fertilization ; Cell fusion ; Cell Survival ; Chromatin ; Chromatin - genetics ; chromatin modeling ; Divergence ; DNA microarrays ; Embryos ; Endosperm ; Epigenesis, Genetic ; Epigenetics ; expression profiling ; Fertilization ; Flowering ; Flowering plants ; gamete transcriptome ; Gametes ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Plant ; Gene sequencing ; Gene silencing ; Genes ; Genes, Plant ; Genomes ; Genomics ; Germ cells ; Germ Cells, Plant - cytology ; Germ Cells, Plant - metabolism ; Histones ; male gamete expression ; male germ unit ; Males ; Oligonucleotide Array Sequence Analysis - methods ; Oryza - cytology ; Oryza sativa ; Plant Cells - metabolism ; Plant diseases ; Plants ; Pollen ; Reproduction ; Ribonucleic acid ; Rice ; RNA ; RNA Interference ; RNA, Plant - genetics ; RNA-mediated interference ; Seedlings ; Seedlings - genetics ; Seedlings - metabolism ; Somatic cells ; Sperm ; Spermatozoa ; Transcriptional Activation ; Ubiquitin</subject><ispartof>The New phytologist, 2012-08, Vol.195 (3), p.560-573</ispartof><rights>2012 New Phytologist Trust</rights><rights>2012 The Authors. New Phytologist © 2012 New Phytologist Trust</rights><rights>2012 The Authors. New Phytologist © 2012 New Phytologist Trust.</rights><rights>Copyright Wiley Subscription Services, Inc. Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5629-c4ef636c19fd39392e4309f97c783a9c887be11161e1702dc1c44ad1123b87253</citedby><cites>FETCH-LOGICAL-c5629-c4ef636c19fd39392e4309f97c783a9c887be11161e1702dc1c44ad1123b87253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.195.3.560$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.195.3.560$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27903,27904,45553,45554,46387,46811,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22716952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Russell, Scott D.</creatorcontrib><creatorcontrib>Gou, Xiaoping</creatorcontrib><creatorcontrib>Wong, Chui E.</creatorcontrib><creatorcontrib>Wang, Xinkun</creatorcontrib><creatorcontrib>Yuan, Tong</creatorcontrib><creatorcontrib>Wei, Xiaoping</creatorcontrib><creatorcontrib>Bhalla, Prem L.</creatorcontrib><creatorcontrib>Singh, Mohan B.</creatorcontrib><title>Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Genomic assay of sperm cell RNA provides insight into functional control, modes of regulation, and contributions of male gametes to double fertilization. Sperm cells of rice (Oryza sativa) were isolated from field-grown, disease-free plants and RNA was processed for use with the full-genome Affymetrix microarray. Comparison with Gene Expression Omnibus (GEO) reference arrays confirmed expressionally distinct gene profiles. A total of 10 732 distinct gene sequences were detected in sperm cells, of which 1668 were not expressed in pollen or seedlings. Pathways enriched in male germ cells included ubiquitin-mediated pathways, pathways involved in chromatin modeling including histones, histone modification and nonhistone epigenetic modification, and pathways related to RNAi and gene silencing. Genome-wide expression patterns in angiosperm sperm cells indicate common and divergent themes in the male germline that appear to be largely self-regulating through highly up-regulated chromatin modification pathways. A core of highly conserved genes appear common to all sperm cells, but evidence is still emerging that another class of genes have diverged in expression between monocots and dicots since their divergence. Sperm cell transcripts present at fusion may be transmitted through plasmogamy during double fertilization to effect immediate post-fertilization expression of early embryo and (or) endosperm development.</description><subject>angiosperm sperm cells</subject><subject>Animal embryos</subject><subject>Biological fertilization</subject><subject>Cell fusion</subject><subject>Cell Survival</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>chromatin modeling</subject><subject>Divergence</subject><subject>DNA microarrays</subject><subject>Embryos</subject><subject>Endosperm</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>expression profiling</subject><subject>Fertilization</subject><subject>Flowering</subject><subject>Flowering plants</subject><subject>gamete transcriptome</subject><subject>Gametes</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene sequencing</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Germ cells</subject><subject>Germ Cells, Plant - cytology</subject><subject>Germ Cells, Plant - metabolism</subject><subject>Histones</subject><subject>male gamete expression</subject><subject>male germ unit</subject><subject>Males</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oryza - cytology</subject><subject>Oryza sativa</subject><subject>Plant Cells - metabolism</subject><subject>Plant diseases</subject><subject>Plants</subject><subject>Pollen</subject><subject>Reproduction</subject><subject>Ribonucleic acid</subject><subject>Rice</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>RNA, Plant - genetics</subject><subject>RNA-mediated interference</subject><subject>Seedlings</subject><subject>Seedlings - genetics</subject><subject>Seedlings - metabolism</subject><subject>Somatic cells</subject><subject>Sperm</subject><subject>Spermatozoa</subject><subject>Transcriptional Activation</subject><subject>Ubiquitin</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1u1DAUhS0EokPhFZAlNmwS_Bc7XrBAVWmRKmABEjsr49xMPXLsYGc6nSVvjsOUWbBA9caW_J1z7_UxQpiSmpb1bltTIXXVUq5qRiiriaBa1_dP0Op08RStCGFtJYX8cYZe5LwlhOhGsufojDFFpW7YCv26ghBHZ_GU4uC8CxscB5ycBZwnSCO24D2eUxeyTW6aM05wB53P2MaQId1Bj7vQ497l2QU7Y_AwQiicC3i-BTz4uIe0-E6-CzMeOw94sziXYtBt4CV6NhQ_ePWwn6PvHy-_XVxXN1-uPl18uKls6VlXVsAgubRUDz3XXDMQnOhBK6ta3mnbtmoN5W0kBaoI6y21QnQ9pYyvW8Uafo7eHn3LpD93kGczurxM1wWIu2wo0Vw0XDD1CJQJoVomeUHf_INu4y6FMohhDeVM6ZbL_1FUcMapbMnSYXukbIo5JxjMlNzYpUMpaJbczdYs8ZolXrPkbv7kbu6L9PVDgd16hP4k_Bt0Ad4fgb3zcHi0sfn89Xo5FX111G_zHNNJH2A_3R7m6OOmfABDdWO4aSThvwHebcu3</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Russell, Scott D.</creator><creator>Gou, Xiaoping</creator><creator>Wong, Chui E.</creator><creator>Wang, Xinkun</creator><creator>Yuan, Tong</creator><creator>Wei, Xiaoping</creator><creator>Bhalla, Prem L.</creator><creator>Singh, Mohan B.</creator><general>New Phytologist Trust</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201208</creationdate><title>Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage</title><author>Russell, Scott D. ; Gou, Xiaoping ; Wong, Chui E. ; Wang, Xinkun ; Yuan, Tong ; Wei, Xiaoping ; Bhalla, Prem L. ; Singh, Mohan B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5629-c4ef636c19fd39392e4309f97c783a9c887be11161e1702dc1c44ad1123b87253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>angiosperm sperm cells</topic><topic>Animal embryos</topic><topic>Biological fertilization</topic><topic>Cell fusion</topic><topic>Cell Survival</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>chromatin modeling</topic><topic>Divergence</topic><topic>DNA microarrays</topic><topic>Embryos</topic><topic>Endosperm</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>expression profiling</topic><topic>Fertilization</topic><topic>Flowering</topic><topic>Flowering plants</topic><topic>gamete transcriptome</topic><topic>Gametes</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene sequencing</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Germ cells</topic><topic>Germ Cells, Plant - cytology</topic><topic>Germ Cells, Plant - metabolism</topic><topic>Histones</topic><topic>male gamete expression</topic><topic>male germ unit</topic><topic>Males</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oryza - cytology</topic><topic>Oryza sativa</topic><topic>Plant Cells - metabolism</topic><topic>Plant diseases</topic><topic>Plants</topic><topic>Pollen</topic><topic>Reproduction</topic><topic>Ribonucleic acid</topic><topic>Rice</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>RNA, Plant - genetics</topic><topic>RNA-mediated interference</topic><topic>Seedlings</topic><topic>Seedlings - genetics</topic><topic>Seedlings - metabolism</topic><topic>Somatic cells</topic><topic>Sperm</topic><topic>Spermatozoa</topic><topic>Transcriptional Activation</topic><topic>Ubiquitin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russell, Scott D.</creatorcontrib><creatorcontrib>Gou, Xiaoping</creatorcontrib><creatorcontrib>Wong, Chui E.</creatorcontrib><creatorcontrib>Wang, Xinkun</creatorcontrib><creatorcontrib>Yuan, Tong</creatorcontrib><creatorcontrib>Wei, Xiaoping</creatorcontrib><creatorcontrib>Bhalla, Prem L.</creatorcontrib><creatorcontrib>Singh, Mohan B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russell, Scott D.</au><au>Gou, Xiaoping</au><au>Wong, Chui E.</au><au>Wang, Xinkun</au><au>Yuan, Tong</au><au>Wei, Xiaoping</au><au>Bhalla, Prem L.</au><au>Singh, Mohan B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2012-08</date><risdate>2012</risdate><volume>195</volume><issue>3</issue><spage>560</spage><epage>573</epage><pages>560-573</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Genomic assay of sperm cell RNA provides insight into functional control, modes of regulation, and contributions of male gametes to double fertilization. Sperm cells of rice (Oryza sativa) were isolated from field-grown, disease-free plants and RNA was processed for use with the full-genome Affymetrix microarray. Comparison with Gene Expression Omnibus (GEO) reference arrays confirmed expressionally distinct gene profiles. A total of 10 732 distinct gene sequences were detected in sperm cells, of which 1668 were not expressed in pollen or seedlings. Pathways enriched in male germ cells included ubiquitin-mediated pathways, pathways involved in chromatin modeling including histones, histone modification and nonhistone epigenetic modification, and pathways related to RNAi and gene silencing. Genome-wide expression patterns in angiosperm sperm cells indicate common and divergent themes in the male germline that appear to be largely self-regulating through highly up-regulated chromatin modification pathways. A core of highly conserved genes appear common to all sperm cells, but evidence is still emerging that another class of genes have diverged in expression between monocots and dicots since their divergence. Sperm cell transcripts present at fusion may be transmitted through plasmogamy during double fertilization to effect immediate post-fertilization expression of early embryo and (or) endosperm development.</abstract><cop>Oxford, UK</cop><pub>New Phytologist Trust</pub><pmid>22716952</pmid><doi>10.1111/j.1469-8137.2012.04199.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2012-08, Vol.195 (3), p.560-573
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1093453427
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Wiley Free Content; IngentaConnect Free/Open Access Journals
subjects angiosperm sperm cells
Animal embryos
Biological fertilization
Cell fusion
Cell Survival
Chromatin
Chromatin - genetics
chromatin modeling
Divergence
DNA microarrays
Embryos
Endosperm
Epigenesis, Genetic
Epigenetics
expression profiling
Fertilization
Flowering
Flowering plants
gamete transcriptome
Gametes
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Plant
Gene sequencing
Gene silencing
Genes
Genes, Plant
Genomes
Genomics
Germ cells
Germ Cells, Plant - cytology
Germ Cells, Plant - metabolism
Histones
male gamete expression
male germ unit
Males
Oligonucleotide Array Sequence Analysis - methods
Oryza - cytology
Oryza sativa
Plant Cells - metabolism
Plant diseases
Plants
Pollen
Reproduction
Ribonucleic acid
Rice
RNA
RNA Interference
RNA, Plant - genetics
RNA-mediated interference
Seedlings
Seedlings - genetics
Seedlings - metabolism
Somatic cells
Sperm
Spermatozoa
Transcriptional Activation
Ubiquitin
title Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20profiling%20of%20rice%20sperm%20cell%20transcripts%20reveals%20conserved%20and%20distinct%20elements%20in%20the%20flowering%20plant%20male%20germ%20lineage&rft.jtitle=The%20New%20phytologist&rft.au=Russell,%20Scott%20D.&rft.date=2012-08&rft.volume=195&rft.issue=3&rft.spage=560&rft.epage=573&rft.pages=560-573&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2012.04199.x&rft_dat=%3Cjstor_proqu%3Enewphytologist.195.3.560%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1432316805&rft_id=info:pmid/22716952&rft_jstor_id=newphytologist.195.3.560&rfr_iscdi=true