DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.)

We isolated a DREB orthologue, MtDREB1C, from Medicago truncatula. Its deduced protein contains an AP2 domain of 57 amino acids. Yeast one-hybrid assay revealed that MtDREB1C specifically bound to the dehydration-responsive element (DRE) and activated the expression of HIS3 and LacZ reporter genes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant growth regulation 2010-04, Vol.60 (3), p.199-211
Hauptverfasser: Chen, Ji-Ren, Lü, Jing-Jing, Liu, Rong, Xiong, Xing-Yao, Wang, Tian-xiang, Chen, Shou-Yi, Guo, Lan-Bin, Wang, Hua-Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 3
container_start_page 199
container_title Plant growth regulation
container_volume 60
creator Chen, Ji-Ren
Lü, Jing-Jing
Liu, Rong
Xiong, Xing-Yao
Wang, Tian-xiang
Chen, Shou-Yi
Guo, Lan-Bin
Wang, Hua-Fang
description We isolated a DREB orthologue, MtDREB1C, from Medicago truncatula. Its deduced protein contains an AP2 domain of 57 amino acids. Yeast one-hybrid assay revealed that MtDREB1C specifically bound to the dehydration-responsive element (DRE) and activated the expression of HIS3 and LacZ reporter genes. In a transcriptional activation assay, coexpression of the MtDREB1C cDNA resulted in much higher (21.2 times) transactivation of the LacZ reporter gene than experiments performed without MtDREB1C. Transformation of Medicago revealed that overexpression of MtDREB1C suppressed shoot growth, and enhanced the freezing tolerance of M. truncatula. The MtDREB1C gene was transformed into China Rose (Rosa chinensis Jacq.) driven by Arabidopsis rd29A promoter. Southern-blot analysis showed that the target gene was integrated into the genome of a surviving transgenic rose plant. Northern-blot analysis illustrated that robust expression of MtDREB1C was only activated under stress conditions, and the expressed MtDREB1C mRNA reached maximum accumulation 10 h following freezing treatment. The performance of the transgenic line under freezing stress was superior to untransformed controls. This transgenic plant continued to grow, flowered under unstressed conditions, and was phenotypically normal. These facts indicate that the MtDREB1C gene, isolated from Medicago truncatula and driven by the Arabidopsis rd29A promoter, enhanced freezing tolerance in transgenic China Rose significantly without any obvious morphological or developmental abnormality.
doi_str_mv 10.1007/s10725-009-9434-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1093431423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377628041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-81a1787c427d7df6f17f8603705991818b319e15d4f2c68c0cb85eedbfe3f8153</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEkvhB3DC4lQOWWZiJ3aOsLR8qBVSoWfL64xTV1m7tZMDSPz3ehUkEAcuY2n0PK_GeqvqJcIWAeTbjCCbtgbo615wUYtH1QZbyesWlHxcbQA7WXc98KfVs5xvAUCpFjfVrw9XZ-9xx1yKB3ZJg7dmjGxOS7BmXibDKNyYYCkXguinDyOb40TpuGM-FNKEPFLwll1u__ZMGNjuxgfDrmImdlqmYbYsKGSf2Rdj77dvnldPnJkyvfj9nlTX52ffd5_qi68fP-_eXdSWy2auFRqUSlrRyEEOrnMoneqAS2j7HhWqPceesB2Ea2ynLNi9aomGvSPuFLb8pDpdc-9SvF8oz_rgs6VpMoHikjVCzwVH0fCCvv4HvY1LCuU6rWTDheAcCoQrZFPMOZHTd8kfTPpRkvSxD732oUsf-tiHFsVpVicXNoyU_gT_T3q1Ss5Ebcbks77-1gByKN8WyCV_AIB1lZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872344330</pqid></control><display><type>article</type><title>DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.)</title><source>Springer Online Journals Complete</source><creator>Chen, Ji-Ren ; Lü, Jing-Jing ; Liu, Rong ; Xiong, Xing-Yao ; Wang, Tian-xiang ; Chen, Shou-Yi ; Guo, Lan-Bin ; Wang, Hua-Fang</creator><creatorcontrib>Chen, Ji-Ren ; Lü, Jing-Jing ; Liu, Rong ; Xiong, Xing-Yao ; Wang, Tian-xiang ; Chen, Shou-Yi ; Guo, Lan-Bin ; Wang, Hua-Fang</creatorcontrib><description>We isolated a DREB orthologue, MtDREB1C, from Medicago truncatula. Its deduced protein contains an AP2 domain of 57 amino acids. Yeast one-hybrid assay revealed that MtDREB1C specifically bound to the dehydration-responsive element (DRE) and activated the expression of HIS3 and LacZ reporter genes. In a transcriptional activation assay, coexpression of the MtDREB1C cDNA resulted in much higher (21.2 times) transactivation of the LacZ reporter gene than experiments performed without MtDREB1C. Transformation of Medicago revealed that overexpression of MtDREB1C suppressed shoot growth, and enhanced the freezing tolerance of M. truncatula. The MtDREB1C gene was transformed into China Rose (Rosa chinensis Jacq.) driven by Arabidopsis rd29A promoter. Southern-blot analysis showed that the target gene was integrated into the genome of a surviving transgenic rose plant. Northern-blot analysis illustrated that robust expression of MtDREB1C was only activated under stress conditions, and the expressed MtDREB1C mRNA reached maximum accumulation 10 h following freezing treatment. The performance of the transgenic line under freezing stress was superior to untransformed controls. This transgenic plant continued to grow, flowered under unstressed conditions, and was phenotypically normal. These facts indicate that the MtDREB1C gene, isolated from Medicago truncatula and driven by the Arabidopsis rd29A promoter, enhanced freezing tolerance in transgenic China Rose significantly without any obvious morphological or developmental abnormality.</description><identifier>ISSN: 0167-6903</identifier><identifier>EISSN: 1573-5087</identifier><identifier>DOI: 10.1007/s10725-009-9434-4</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Agriculture ; Alfalfa ; Amino acids ; Arabidopsis ; Biomedical and Life Sciences ; Dehydration ; Freezing ; Life Sciences ; Medicago truncatula ; Original Paper ; Plant Anatomy/Development ; Plant Physiology ; Plant Sciences ; Rosa chinensis ; Transgenic plants ; Yeasts</subject><ispartof>Plant growth regulation, 2010-04, Vol.60 (3), p.199-211</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-81a1787c427d7df6f17f8603705991818b319e15d4f2c68c0cb85eedbfe3f8153</citedby><cites>FETCH-LOGICAL-c372t-81a1787c427d7df6f17f8603705991818b319e15d4f2c68c0cb85eedbfe3f8153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10725-009-9434-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10725-009-9434-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Ji-Ren</creatorcontrib><creatorcontrib>Lü, Jing-Jing</creatorcontrib><creatorcontrib>Liu, Rong</creatorcontrib><creatorcontrib>Xiong, Xing-Yao</creatorcontrib><creatorcontrib>Wang, Tian-xiang</creatorcontrib><creatorcontrib>Chen, Shou-Yi</creatorcontrib><creatorcontrib>Guo, Lan-Bin</creatorcontrib><creatorcontrib>Wang, Hua-Fang</creatorcontrib><title>DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.)</title><title>Plant growth regulation</title><addtitle>Plant Growth Regul</addtitle><description>We isolated a DREB orthologue, MtDREB1C, from Medicago truncatula. Its deduced protein contains an AP2 domain of 57 amino acids. Yeast one-hybrid assay revealed that MtDREB1C specifically bound to the dehydration-responsive element (DRE) and activated the expression of HIS3 and LacZ reporter genes. In a transcriptional activation assay, coexpression of the MtDREB1C cDNA resulted in much higher (21.2 times) transactivation of the LacZ reporter gene than experiments performed without MtDREB1C. Transformation of Medicago revealed that overexpression of MtDREB1C suppressed shoot growth, and enhanced the freezing tolerance of M. truncatula. The MtDREB1C gene was transformed into China Rose (Rosa chinensis Jacq.) driven by Arabidopsis rd29A promoter. Southern-blot analysis showed that the target gene was integrated into the genome of a surviving transgenic rose plant. Northern-blot analysis illustrated that robust expression of MtDREB1C was only activated under stress conditions, and the expressed MtDREB1C mRNA reached maximum accumulation 10 h following freezing treatment. The performance of the transgenic line under freezing stress was superior to untransformed controls. This transgenic plant continued to grow, flowered under unstressed conditions, and was phenotypically normal. These facts indicate that the MtDREB1C gene, isolated from Medicago truncatula and driven by the Arabidopsis rd29A promoter, enhanced freezing tolerance in transgenic China Rose significantly without any obvious morphological or developmental abnormality.</description><subject>Agriculture</subject><subject>Alfalfa</subject><subject>Amino acids</subject><subject>Arabidopsis</subject><subject>Biomedical and Life Sciences</subject><subject>Dehydration</subject><subject>Freezing</subject><subject>Life Sciences</subject><subject>Medicago truncatula</subject><subject>Original Paper</subject><subject>Plant Anatomy/Development</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Rosa chinensis</subject><subject>Transgenic plants</subject><subject>Yeasts</subject><issn>0167-6903</issn><issn>1573-5087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1v1DAQhiMEEkvhB3DC4lQOWWZiJ3aOsLR8qBVSoWfL64xTV1m7tZMDSPz3ehUkEAcuY2n0PK_GeqvqJcIWAeTbjCCbtgbo615wUYtH1QZbyesWlHxcbQA7WXc98KfVs5xvAUCpFjfVrw9XZ-9xx1yKB3ZJg7dmjGxOS7BmXibDKNyYYCkXguinDyOb40TpuGM-FNKEPFLwll1u__ZMGNjuxgfDrmImdlqmYbYsKGSf2Rdj77dvnldPnJkyvfj9nlTX52ffd5_qi68fP-_eXdSWy2auFRqUSlrRyEEOrnMoneqAS2j7HhWqPceesB2Ea2ynLNi9aomGvSPuFLb8pDpdc-9SvF8oz_rgs6VpMoHikjVCzwVH0fCCvv4HvY1LCuU6rWTDheAcCoQrZFPMOZHTd8kfTPpRkvSxD732oUsf-tiHFsVpVicXNoyU_gT_T3q1Ss5Ebcbks77-1gByKN8WyCV_AIB1lZk</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Chen, Ji-Ren</creator><creator>Lü, Jing-Jing</creator><creator>Liu, Rong</creator><creator>Xiong, Xing-Yao</creator><creator>Wang, Tian-xiang</creator><creator>Chen, Shou-Yi</creator><creator>Guo, Lan-Bin</creator><creator>Wang, Hua-Fang</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20100401</creationdate><title>DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.)</title><author>Chen, Ji-Ren ; Lü, Jing-Jing ; Liu, Rong ; Xiong, Xing-Yao ; Wang, Tian-xiang ; Chen, Shou-Yi ; Guo, Lan-Bin ; Wang, Hua-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-81a1787c427d7df6f17f8603705991818b319e15d4f2c68c0cb85eedbfe3f8153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agriculture</topic><topic>Alfalfa</topic><topic>Amino acids</topic><topic>Arabidopsis</topic><topic>Biomedical and Life Sciences</topic><topic>Dehydration</topic><topic>Freezing</topic><topic>Life Sciences</topic><topic>Medicago truncatula</topic><topic>Original Paper</topic><topic>Plant Anatomy/Development</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Rosa chinensis</topic><topic>Transgenic plants</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ji-Ren</creatorcontrib><creatorcontrib>Lü, Jing-Jing</creatorcontrib><creatorcontrib>Liu, Rong</creatorcontrib><creatorcontrib>Xiong, Xing-Yao</creatorcontrib><creatorcontrib>Wang, Tian-xiang</creatorcontrib><creatorcontrib>Chen, Shou-Yi</creatorcontrib><creatorcontrib>Guo, Lan-Bin</creatorcontrib><creatorcontrib>Wang, Hua-Fang</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Plant growth regulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ji-Ren</au><au>Lü, Jing-Jing</au><au>Liu, Rong</au><au>Xiong, Xing-Yao</au><au>Wang, Tian-xiang</au><au>Chen, Shou-Yi</au><au>Guo, Lan-Bin</au><au>Wang, Hua-Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.)</atitle><jtitle>Plant growth regulation</jtitle><stitle>Plant Growth Regul</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>60</volume><issue>3</issue><spage>199</spage><epage>211</epage><pages>199-211</pages><issn>0167-6903</issn><eissn>1573-5087</eissn><abstract>We isolated a DREB orthologue, MtDREB1C, from Medicago truncatula. Its deduced protein contains an AP2 domain of 57 amino acids. Yeast one-hybrid assay revealed that MtDREB1C specifically bound to the dehydration-responsive element (DRE) and activated the expression of HIS3 and LacZ reporter genes. In a transcriptional activation assay, coexpression of the MtDREB1C cDNA resulted in much higher (21.2 times) transactivation of the LacZ reporter gene than experiments performed without MtDREB1C. Transformation of Medicago revealed that overexpression of MtDREB1C suppressed shoot growth, and enhanced the freezing tolerance of M. truncatula. The MtDREB1C gene was transformed into China Rose (Rosa chinensis Jacq.) driven by Arabidopsis rd29A promoter. Southern-blot analysis showed that the target gene was integrated into the genome of a surviving transgenic rose plant. Northern-blot analysis illustrated that robust expression of MtDREB1C was only activated under stress conditions, and the expressed MtDREB1C mRNA reached maximum accumulation 10 h following freezing treatment. The performance of the transgenic line under freezing stress was superior to untransformed controls. This transgenic plant continued to grow, flowered under unstressed conditions, and was phenotypically normal. These facts indicate that the MtDREB1C gene, isolated from Medicago truncatula and driven by the Arabidopsis rd29A promoter, enhanced freezing tolerance in transgenic China Rose significantly without any obvious morphological or developmental abnormality.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><doi>10.1007/s10725-009-9434-4</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6903
ispartof Plant growth regulation, 2010-04, Vol.60 (3), p.199-211
issn 0167-6903
1573-5087
language eng
recordid cdi_proquest_miscellaneous_1093431423
source Springer Online Journals Complete
subjects Agriculture
Alfalfa
Amino acids
Arabidopsis
Biomedical and Life Sciences
Dehydration
Freezing
Life Sciences
Medicago truncatula
Original Paper
Plant Anatomy/Development
Plant Physiology
Plant Sciences
Rosa chinensis
Transgenic plants
Yeasts
title DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DREB1C%20from%20Medicago%20truncatula%20enhances%20freezing%20tolerance%20in%20transgenic%20M.%20truncatula%20and%20China%20Rose%20(Rosa%20chinensis%20Jacq.)&rft.jtitle=Plant%20growth%20regulation&rft.au=Chen,%20Ji-Ren&rft.date=2010-04-01&rft.volume=60&rft.issue=3&rft.spage=199&rft.epage=211&rft.pages=199-211&rft.issn=0167-6903&rft.eissn=1573-5087&rft_id=info:doi/10.1007/s10725-009-9434-4&rft_dat=%3Cproquest_cross%3E2377628041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872344330&rft_id=info:pmid/&rfr_iscdi=true