Biofouling in an anaerobic membrane bioreactor treating municipal sewage

[Display omitted] ► Pilot-scale anaerobic membrane bioreactor met sewage reclamation criteria. ► Soluble products in reactor effluent had a bimodal molecular weight distribution. ► Biofouling layer was mainly comprised of cell-free organic matter (78%). ► The remnant fouling layer presented biologic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Separation and purification technology 2011-09, Vol.81 (1), p.49-55
Hauptverfasser: Herrera-Robledo, M., Cid-León, D.M., Morgan-Sagastume, J.M., Noyola, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 49
container_title Separation and purification technology
container_volume 81
creator Herrera-Robledo, M.
Cid-León, D.M.
Morgan-Sagastume, J.M.
Noyola, A.
description [Display omitted] ► Pilot-scale anaerobic membrane bioreactor met sewage reclamation criteria. ► Soluble products in reactor effluent had a bimodal molecular weight distribution. ► Biofouling layer was mainly comprised of cell-free organic matter (78%). ► The remnant fouling layer presented biologically-induced mineralization materials. ► The biomineralized structures would be the basis of irreversible membrane fouling. At present, considering the availability of reports on aerobic membrane reactor research and full scale experiences, there is a lack of understanding associated to anaerobic membrane bioreactor (AnMBR) applications for low-strength wastewater treatment. In this context, this research aims (1) to evaluate the performance of an AnMBR for municipal sewage treatment at ambient temperature and (2) to contribute to the understanding of AnMBR fouling by characterizing the cake layer with membrane autopsies. Raw sewage was fed at a hydraulic retention time (HRT) of 6 h into an up-flow anaerobic sludge blanket (UASB) reactor (0.849 m 3 volume) coupled to polyvinylidene fluoride (PVDF) external tubular ultrafiltration (UF) modules (100 kDa cut-off; total membrane area of 5.10 m 2). AnMBR permeate was a clear, suspended solids-free effluent with nearly 30 mg L −1 of chemical oxygen demand (removal of 93%) without fecal coliforms or parasite ova. Soluble constituents in the UASB effluent were grouped into two predominant fractions (bimodal distribution): higher (144 mg L −1) and lower (89 mg L −1) than membrane nominal cut-off, with an average effluent carbohydrate to protein (C/P) ratio of 0.75. Membrane autopsies were performed on two sections of UF unit, subsequent to a 55-h fouling build-up period (biofouled membrane – BFM – condition). Biofouling characteristics were compared with the fouling layer that remained after a partial (mild) cleaning procedure using chlorine (NaClO at 300 mg L −1, for 30 min). This cleaning practice accomplished a limited removal of fouling mass per unit area (13%). The remnant fouling layer apparently was in part formed by biologically-induced mineralization materials, synthesized in response to cleaning procedure. The resultant biomineralized deposits are an important structural component within the remnant cake layer and may be the basis of irreversible membrane fouling.
doi_str_mv 10.1016/j.seppur.2011.06.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1093423574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1383586611003911</els_id><sourcerecordid>1093423574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-c7e31496100440b1155c7e2de1b789e68fd478facaa6705a4aea05be2a9fb7fc3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoso-PkPBHsRvLQmTZq0F0EXv0DwoHsO0-xkydI2NWkV_70pFY_CwAzhmTfDkyTnlOSUUHG9ywMOw-TzglCaE5ETTveSI1pJljFZ8_04s4plZSXEYXIcwo4QKmlVHCVPd9YZN7W236a2T2EuQO8aq9MOu8ZDj2ljnUfQo_PpGIdxhrupt9oO0KYBv2CLp8mBgTbg2W8_SdYP9--rp-zl9fF5dfuSaVazMdMSGeW1oIRwThpKyzI-FRukjaxqFJXZcFkZ0ABCkhI4IJCywQJq00ij2UlyteQO3n1MGEbV2aCxbeOhbgqKkprxgpWSR5QvqPYuBI9GDd524L8jpGZxaqcWcWoWp4hQUVxcu_z9AYKG1kQF2oa_3YLzirNijr9YOANOwdZHZv0Wg8oot6A1F5G4WQiMQj4tehW0xV7jxnrUo9o4-_8pPzm5j7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093423574</pqid></control><display><type>article</type><title>Biofouling in an anaerobic membrane bioreactor treating municipal sewage</title><source>Elsevier ScienceDirect Journals</source><creator>Herrera-Robledo, M. ; Cid-León, D.M. ; Morgan-Sagastume, J.M. ; Noyola, A.</creator><creatorcontrib>Herrera-Robledo, M. ; Cid-León, D.M. ; Morgan-Sagastume, J.M. ; Noyola, A.</creatorcontrib><description>[Display omitted] ► Pilot-scale anaerobic membrane bioreactor met sewage reclamation criteria. ► Soluble products in reactor effluent had a bimodal molecular weight distribution. ► Biofouling layer was mainly comprised of cell-free organic matter (78%). ► The remnant fouling layer presented biologically-induced mineralization materials. ► The biomineralized structures would be the basis of irreversible membrane fouling. At present, considering the availability of reports on aerobic membrane reactor research and full scale experiences, there is a lack of understanding associated to anaerobic membrane bioreactor (AnMBR) applications for low-strength wastewater treatment. In this context, this research aims (1) to evaluate the performance of an AnMBR for municipal sewage treatment at ambient temperature and (2) to contribute to the understanding of AnMBR fouling by characterizing the cake layer with membrane autopsies. Raw sewage was fed at a hydraulic retention time (HRT) of 6 h into an up-flow anaerobic sludge blanket (UASB) reactor (0.849 m 3 volume) coupled to polyvinylidene fluoride (PVDF) external tubular ultrafiltration (UF) modules (100 kDa cut-off; total membrane area of 5.10 m 2). AnMBR permeate was a clear, suspended solids-free effluent with nearly 30 mg L −1 of chemical oxygen demand (removal of 93%) without fecal coliforms or parasite ova. Soluble constituents in the UASB effluent were grouped into two predominant fractions (bimodal distribution): higher (144 mg L −1) and lower (89 mg L −1) than membrane nominal cut-off, with an average effluent carbohydrate to protein (C/P) ratio of 0.75. Membrane autopsies were performed on two sections of UF unit, subsequent to a 55-h fouling build-up period (biofouled membrane – BFM – condition). Biofouling characteristics were compared with the fouling layer that remained after a partial (mild) cleaning procedure using chlorine (NaClO at 300 mg L −1, for 30 min). This cleaning practice accomplished a limited removal of fouling mass per unit area (13%). The remnant fouling layer apparently was in part formed by biologically-induced mineralization materials, synthesized in response to cleaning procedure. The resultant biomineralized deposits are an important structural component within the remnant cake layer and may be the basis of irreversible membrane fouling.</description><identifier>ISSN: 1383-5866</identifier><identifier>EISSN: 1873-3794</identifier><identifier>DOI: 10.1016/j.seppur.2011.06.041</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>ambient temperature ; Anaerobic membrane bioreactors ; Applied sciences ; Biofouling ; Biological and medical sciences ; Biologically-induced mineralization ; Biotechnology ; Chemical engineering ; chemical oxygen demand ; chlorine ; cleaning ; coliform bacteria ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General purification processes ; Membrane separation (reverse osmosis, dialysis...) ; Methods. Procedures. Technologies ; mineralization ; necropsy ; Others ; ova ; parasites ; Pilot scale ; Pollution ; Reactors ; Remnant fouling layer ; sewage ; sewage treatment ; sludge ; UASB ; ultrafiltration ; upflow anaerobic sludge blanket reactor ; Various methods and equipments ; wastewater treatment ; Wastewaters ; Water treatment and pollution</subject><ispartof>Separation and purification technology, 2011-09, Vol.81 (1), p.49-55</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-c7e31496100440b1155c7e2de1b789e68fd478facaa6705a4aea05be2a9fb7fc3</citedby><cites>FETCH-LOGICAL-c393t-c7e31496100440b1155c7e2de1b789e68fd478facaa6705a4aea05be2a9fb7fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1383586611003911$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24484324$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrera-Robledo, M.</creatorcontrib><creatorcontrib>Cid-León, D.M.</creatorcontrib><creatorcontrib>Morgan-Sagastume, J.M.</creatorcontrib><creatorcontrib>Noyola, A.</creatorcontrib><title>Biofouling in an anaerobic membrane bioreactor treating municipal sewage</title><title>Separation and purification technology</title><description>[Display omitted] ► Pilot-scale anaerobic membrane bioreactor met sewage reclamation criteria. ► Soluble products in reactor effluent had a bimodal molecular weight distribution. ► Biofouling layer was mainly comprised of cell-free organic matter (78%). ► The remnant fouling layer presented biologically-induced mineralization materials. ► The biomineralized structures would be the basis of irreversible membrane fouling. At present, considering the availability of reports on aerobic membrane reactor research and full scale experiences, there is a lack of understanding associated to anaerobic membrane bioreactor (AnMBR) applications for low-strength wastewater treatment. In this context, this research aims (1) to evaluate the performance of an AnMBR for municipal sewage treatment at ambient temperature and (2) to contribute to the understanding of AnMBR fouling by characterizing the cake layer with membrane autopsies. Raw sewage was fed at a hydraulic retention time (HRT) of 6 h into an up-flow anaerobic sludge blanket (UASB) reactor (0.849 m 3 volume) coupled to polyvinylidene fluoride (PVDF) external tubular ultrafiltration (UF) modules (100 kDa cut-off; total membrane area of 5.10 m 2). AnMBR permeate was a clear, suspended solids-free effluent with nearly 30 mg L −1 of chemical oxygen demand (removal of 93%) without fecal coliforms or parasite ova. Soluble constituents in the UASB effluent were grouped into two predominant fractions (bimodal distribution): higher (144 mg L −1) and lower (89 mg L −1) than membrane nominal cut-off, with an average effluent carbohydrate to protein (C/P) ratio of 0.75. Membrane autopsies were performed on two sections of UF unit, subsequent to a 55-h fouling build-up period (biofouled membrane – BFM – condition). Biofouling characteristics were compared with the fouling layer that remained after a partial (mild) cleaning procedure using chlorine (NaClO at 300 mg L −1, for 30 min). This cleaning practice accomplished a limited removal of fouling mass per unit area (13%). The remnant fouling layer apparently was in part formed by biologically-induced mineralization materials, synthesized in response to cleaning procedure. The resultant biomineralized deposits are an important structural component within the remnant cake layer and may be the basis of irreversible membrane fouling.</description><subject>ambient temperature</subject><subject>Anaerobic membrane bioreactors</subject><subject>Applied sciences</subject><subject>Biofouling</subject><subject>Biological and medical sciences</subject><subject>Biologically-induced mineralization</subject><subject>Biotechnology</subject><subject>Chemical engineering</subject><subject>chemical oxygen demand</subject><subject>chlorine</subject><subject>cleaning</subject><subject>coliform bacteria</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General purification processes</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>Methods. Procedures. Technologies</subject><subject>mineralization</subject><subject>necropsy</subject><subject>Others</subject><subject>ova</subject><subject>parasites</subject><subject>Pilot scale</subject><subject>Pollution</subject><subject>Reactors</subject><subject>Remnant fouling layer</subject><subject>sewage</subject><subject>sewage treatment</subject><subject>sludge</subject><subject>UASB</subject><subject>ultrafiltration</subject><subject>upflow anaerobic sludge blanket reactor</subject><subject>Various methods and equipments</subject><subject>wastewater treatment</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>1383-5866</issn><issn>1873-3794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoso-PkPBHsRvLQmTZq0F0EXv0DwoHsO0-xkydI2NWkV_70pFY_CwAzhmTfDkyTnlOSUUHG9ywMOw-TzglCaE5ETTveSI1pJljFZ8_04s4plZSXEYXIcwo4QKmlVHCVPd9YZN7W236a2T2EuQO8aq9MOu8ZDj2ljnUfQo_PpGIdxhrupt9oO0KYBv2CLp8mBgTbg2W8_SdYP9--rp-zl9fF5dfuSaVazMdMSGeW1oIRwThpKyzI-FRukjaxqFJXZcFkZ0ABCkhI4IJCywQJq00ij2UlyteQO3n1MGEbV2aCxbeOhbgqKkprxgpWSR5QvqPYuBI9GDd524L8jpGZxaqcWcWoWp4hQUVxcu_z9AYKG1kQF2oa_3YLzirNijr9YOANOwdZHZv0Wg8oot6A1F5G4WQiMQj4tehW0xV7jxnrUo9o4-_8pPzm5j7Y</recordid><startdate>20110905</startdate><enddate>20110905</enddate><creator>Herrera-Robledo, M.</creator><creator>Cid-León, D.M.</creator><creator>Morgan-Sagastume, J.M.</creator><creator>Noyola, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110905</creationdate><title>Biofouling in an anaerobic membrane bioreactor treating municipal sewage</title><author>Herrera-Robledo, M. ; Cid-León, D.M. ; Morgan-Sagastume, J.M. ; Noyola, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-c7e31496100440b1155c7e2de1b789e68fd478facaa6705a4aea05be2a9fb7fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ambient temperature</topic><topic>Anaerobic membrane bioreactors</topic><topic>Applied sciences</topic><topic>Biofouling</topic><topic>Biological and medical sciences</topic><topic>Biologically-induced mineralization</topic><topic>Biotechnology</topic><topic>Chemical engineering</topic><topic>chemical oxygen demand</topic><topic>chlorine</topic><topic>cleaning</topic><topic>coliform bacteria</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General purification processes</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>Methods. Procedures. Technologies</topic><topic>mineralization</topic><topic>necropsy</topic><topic>Others</topic><topic>ova</topic><topic>parasites</topic><topic>Pilot scale</topic><topic>Pollution</topic><topic>Reactors</topic><topic>Remnant fouling layer</topic><topic>sewage</topic><topic>sewage treatment</topic><topic>sludge</topic><topic>UASB</topic><topic>ultrafiltration</topic><topic>upflow anaerobic sludge blanket reactor</topic><topic>Various methods and equipments</topic><topic>wastewater treatment</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera-Robledo, M.</creatorcontrib><creatorcontrib>Cid-León, D.M.</creatorcontrib><creatorcontrib>Morgan-Sagastume, J.M.</creatorcontrib><creatorcontrib>Noyola, A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Separation and purification technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera-Robledo, M.</au><au>Cid-León, D.M.</au><au>Morgan-Sagastume, J.M.</au><au>Noyola, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biofouling in an anaerobic membrane bioreactor treating municipal sewage</atitle><jtitle>Separation and purification technology</jtitle><date>2011-09-05</date><risdate>2011</risdate><volume>81</volume><issue>1</issue><spage>49</spage><epage>55</epage><pages>49-55</pages><issn>1383-5866</issn><eissn>1873-3794</eissn><abstract>[Display omitted] ► Pilot-scale anaerobic membrane bioreactor met sewage reclamation criteria. ► Soluble products in reactor effluent had a bimodal molecular weight distribution. ► Biofouling layer was mainly comprised of cell-free organic matter (78%). ► The remnant fouling layer presented biologically-induced mineralization materials. ► The biomineralized structures would be the basis of irreversible membrane fouling. At present, considering the availability of reports on aerobic membrane reactor research and full scale experiences, there is a lack of understanding associated to anaerobic membrane bioreactor (AnMBR) applications for low-strength wastewater treatment. In this context, this research aims (1) to evaluate the performance of an AnMBR for municipal sewage treatment at ambient temperature and (2) to contribute to the understanding of AnMBR fouling by characterizing the cake layer with membrane autopsies. Raw sewage was fed at a hydraulic retention time (HRT) of 6 h into an up-flow anaerobic sludge blanket (UASB) reactor (0.849 m 3 volume) coupled to polyvinylidene fluoride (PVDF) external tubular ultrafiltration (UF) modules (100 kDa cut-off; total membrane area of 5.10 m 2). AnMBR permeate was a clear, suspended solids-free effluent with nearly 30 mg L −1 of chemical oxygen demand (removal of 93%) without fecal coliforms or parasite ova. Soluble constituents in the UASB effluent were grouped into two predominant fractions (bimodal distribution): higher (144 mg L −1) and lower (89 mg L −1) than membrane nominal cut-off, with an average effluent carbohydrate to protein (C/P) ratio of 0.75. Membrane autopsies were performed on two sections of UF unit, subsequent to a 55-h fouling build-up period (biofouled membrane – BFM – condition). Biofouling characteristics were compared with the fouling layer that remained after a partial (mild) cleaning procedure using chlorine (NaClO at 300 mg L −1, for 30 min). This cleaning practice accomplished a limited removal of fouling mass per unit area (13%). The remnant fouling layer apparently was in part formed by biologically-induced mineralization materials, synthesized in response to cleaning procedure. The resultant biomineralized deposits are an important structural component within the remnant cake layer and may be the basis of irreversible membrane fouling.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.seppur.2011.06.041</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1383-5866
ispartof Separation and purification technology, 2011-09, Vol.81 (1), p.49-55
issn 1383-5866
1873-3794
language eng
recordid cdi_proquest_miscellaneous_1093423574
source Elsevier ScienceDirect Journals
subjects ambient temperature
Anaerobic membrane bioreactors
Applied sciences
Biofouling
Biological and medical sciences
Biologically-induced mineralization
Biotechnology
Chemical engineering
chemical oxygen demand
chlorine
cleaning
coliform bacteria
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General purification processes
Membrane separation (reverse osmosis, dialysis...)
Methods. Procedures. Technologies
mineralization
necropsy
Others
ova
parasites
Pilot scale
Pollution
Reactors
Remnant fouling layer
sewage
sewage treatment
sludge
UASB
ultrafiltration
upflow anaerobic sludge blanket reactor
Various methods and equipments
wastewater treatment
Wastewaters
Water treatment and pollution
title Biofouling in an anaerobic membrane bioreactor treating municipal sewage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biofouling%20in%20an%20anaerobic%20membrane%20bioreactor%20treating%20municipal%20sewage&rft.jtitle=Separation%20and%20purification%20technology&rft.au=Herrera-Robledo,%20M.&rft.date=2011-09-05&rft.volume=81&rft.issue=1&rft.spage=49&rft.epage=55&rft.pages=49-55&rft.issn=1383-5866&rft.eissn=1873-3794&rft_id=info:doi/10.1016/j.seppur.2011.06.041&rft_dat=%3Cproquest_cross%3E1093423574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1093423574&rft_id=info:pmid/&rft_els_id=S1383586611003911&rfr_iscdi=true