Alternating electron and proton transfer steps in photosynthetic water oxidation

Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel–production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-10, Vol.109 (40), p.16035-16040
Hauptverfasser: Klauss, André, Haumann, Michael, Dau, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16040
container_issue 40
container_start_page 16035
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Klauss, André
Haumann, Michael
Dau, Holger
description Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel–production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese–calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S ₂ → S ₃ transition of the classical S -state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant ([Formula]). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein–water interface is characterized by a high activation energy (E ₐ = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S ₀ → S ₁ transition are similar (τ, approximately 100 µs; E ₐ = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to [Formula]. By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.
doi_str_mv 10.1073/pnas.1206266109
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082405530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41763197</jstor_id><sourcerecordid>41763197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-b1b584e9f955fe18422cad7bb3f2db87d6b964b290ecf087d52271bf3a2ed3803</originalsourceid><addsrcrecordid>eNpVkc2PFCEQxYnRuOPq2ZPK0UvvFl_dcDHZbPxKNtFE90ygG2bY9EALjLr_vUxmnNULUHm_evVCIfSSwAWBgV0u0ZQLQqGnfU9APUKrdpKu5woeoxUAHTrJKT9Dz0q5AwAlJDxFZ5QqKUHCCn29mqvL0dQQ19jNbqw5RWzihJecanvWbGLxLuNS3VJwiHjZNKHcx7pxNYz4l2kGOP0OUzNJ8Tl64s1c3IvjfY5uP7z_fv2pu_ny8fP11U03Cga1s8QKyZ3ySgjvSAtJRzMN1jJPJyuHqbeq55YqcKOHVgtKB2I9M9RNTAI7R-8OvsvObt00utiSznrJYWvyvU4m6P-VGDZ6nX5qxgcllGoGb48GOf3YuVL1NpTRzbOJLu2KJiApB9HSNvTygI45lZKdP40hoPd70Ps96Ic9tI7X_6Y78X8_vgH4COw7H-yU5s2yByYa8uqA3JWa8onhZOgZUUPT3xx0b5I26xyKvv1GoTUDaWO4YH8ApJGkCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082405530</pqid></control><display><type>article</type><title>Alternating electron and proton transfer steps in photosynthetic water oxidation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Klauss, André ; Haumann, Michael ; Dau, Holger</creator><creatorcontrib>Klauss, André ; Haumann, Michael ; Dau, Holger</creatorcontrib><description>Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel–production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese–calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S ₂ → S ₃ transition of the classical S -state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant ([Formula]). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein–water interface is characterized by a high activation energy (E ₐ = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S ₀ → S ₁ transition are similar (τ, approximately 100 µs; E ₐ = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to [Formula]. By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1206266109</identifier><identifier>PMID: 22988080</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activation energy ; active sites ; Algae ; Biochemistry ; Biological Sciences ; Biological Transport ; Electron transfer ; Electron Transport ; Electrons ; engineering ; isotopes ; Kinetics ; manganese ; Models, Biological ; Molecules ; oxidants ; Oxidation ; Oxidation-Reduction ; Photosynthesis ; Photosynthesis - physiology ; Photosystem II ; Photosystem II Protein Complex - metabolism ; Physical Sciences ; Protons ; solar energy ; Spectrum Analysis - methods ; Spinacia oleracea ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-10, Vol.109 (40), p.16035-16040</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-b1b584e9f955fe18422cad7bb3f2db87d6b964b290ecf087d52271bf3a2ed3803</citedby><cites>FETCH-LOGICAL-c530t-b1b584e9f955fe18422cad7bb3f2db87d6b964b290ecf087d52271bf3a2ed3803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41763197$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41763197$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22988080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klauss, André</creatorcontrib><creatorcontrib>Haumann, Michael</creatorcontrib><creatorcontrib>Dau, Holger</creatorcontrib><title>Alternating electron and proton transfer steps in photosynthetic water oxidation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel–production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese–calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S ₂ → S ₃ transition of the classical S -state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant ([Formula]). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein–water interface is characterized by a high activation energy (E ₐ = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S ₀ → S ₁ transition are similar (τ, approximately 100 µs; E ₐ = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to [Formula]. By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.</description><subject>Activation energy</subject><subject>active sites</subject><subject>Algae</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>engineering</subject><subject>isotopes</subject><subject>Kinetics</subject><subject>manganese</subject><subject>Models, Biological</subject><subject>Molecules</subject><subject>oxidants</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Photosystem II</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Physical Sciences</subject><subject>Protons</subject><subject>solar energy</subject><subject>Spectrum Analysis - methods</subject><subject>Spinacia oleracea</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc2PFCEQxYnRuOPq2ZPK0UvvFl_dcDHZbPxKNtFE90ygG2bY9EALjLr_vUxmnNULUHm_evVCIfSSwAWBgV0u0ZQLQqGnfU9APUKrdpKu5woeoxUAHTrJKT9Dz0q5AwAlJDxFZ5QqKUHCCn29mqvL0dQQ19jNbqw5RWzihJecanvWbGLxLuNS3VJwiHjZNKHcx7pxNYz4l2kGOP0OUzNJ8Tl64s1c3IvjfY5uP7z_fv2pu_ny8fP11U03Cga1s8QKyZ3ySgjvSAtJRzMN1jJPJyuHqbeq55YqcKOHVgtKB2I9M9RNTAI7R-8OvsvObt00utiSznrJYWvyvU4m6P-VGDZ6nX5qxgcllGoGb48GOf3YuVL1NpTRzbOJLu2KJiApB9HSNvTygI45lZKdP40hoPd70Ps96Ic9tI7X_6Y78X8_vgH4COw7H-yU5s2yByYa8uqA3JWa8onhZOgZUUPT3xx0b5I26xyKvv1GoTUDaWO4YH8ApJGkCg</recordid><startdate>20121002</startdate><enddate>20121002</enddate><creator>Klauss, André</creator><creator>Haumann, Michael</creator><creator>Dau, Holger</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121002</creationdate><title>Alternating electron and proton transfer steps in photosynthetic water oxidation</title><author>Klauss, André ; Haumann, Michael ; Dau, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-b1b584e9f955fe18422cad7bb3f2db87d6b964b290ecf087d52271bf3a2ed3803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation energy</topic><topic>active sites</topic><topic>Algae</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>engineering</topic><topic>isotopes</topic><topic>Kinetics</topic><topic>manganese</topic><topic>Models, Biological</topic><topic>Molecules</topic><topic>oxidants</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Photosystem II</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Physical Sciences</topic><topic>Protons</topic><topic>solar energy</topic><topic>Spectrum Analysis - methods</topic><topic>Spinacia oleracea</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klauss, André</creatorcontrib><creatorcontrib>Haumann, Michael</creatorcontrib><creatorcontrib>Dau, Holger</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klauss, André</au><au>Haumann, Michael</au><au>Dau, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternating electron and proton transfer steps in photosynthetic water oxidation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-10-02</date><risdate>2012</risdate><volume>109</volume><issue>40</issue><spage>16035</spage><epage>16040</epage><pages>16035-16040</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel–production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese–calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S ₂ → S ₃ transition of the classical S -state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant ([Formula]). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein–water interface is characterized by a high activation energy (E ₐ = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S ₀ → S ₁ transition are similar (τ, approximately 100 µs; E ₐ = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to [Formula]. By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22988080</pmid><doi>10.1073/pnas.1206266109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-10, Vol.109 (40), p.16035-16040
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1082405530
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Activation energy
active sites
Algae
Biochemistry
Biological Sciences
Biological Transport
Electron transfer
Electron Transport
Electrons
engineering
isotopes
Kinetics
manganese
Models, Biological
Molecules
oxidants
Oxidation
Oxidation-Reduction
Photosynthesis
Photosynthesis - physiology
Photosystem II
Photosystem II Protein Complex - metabolism
Physical Sciences
Protons
solar energy
Spectrum Analysis - methods
Spinacia oleracea
Water - chemistry
title Alternating electron and proton transfer steps in photosynthetic water oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternating%20electron%20and%20proton%20transfer%20steps%20in%20photosynthetic%20water%20oxidation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Klauss,%20Andr%C3%A9&rft.date=2012-10-02&rft.volume=109&rft.issue=40&rft.spage=16035&rft.epage=16040&rft.pages=16035-16040&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1206266109&rft_dat=%3Cjstor_proqu%3E41763197%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082405530&rft_id=info:pmid/22988080&rft_jstor_id=41763197&rfr_iscdi=true