Mapping tinnitus-related brain activation: an activation-likelihood estimation metaanalysis of PET studies

In tinnitus, PET and other functional imaging modalities have shown functional changes not only in the auditory cortex but also in nonauditory regions such as the limbic, frontal, and parietal areas. Nonetheless, disparities in task dimension among studies, low statistical power due to small sample...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Nuclear Medicine 2012-10, Vol.53 (10), p.1550-1557
Hauptverfasser: Song, Jae-Jin, De Ridder, Dirk, Van de Heyning, Paul, Vanneste, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1557
container_issue 10
container_start_page 1550
container_title Journal of Nuclear Medicine
container_volume 53
creator Song, Jae-Jin
De Ridder, Dirk
Van de Heyning, Paul
Vanneste, Sven
description In tinnitus, PET and other functional imaging modalities have shown functional changes not only in the auditory cortex but also in nonauditory regions such as the limbic, frontal, and parietal areas. Nonetheless, disparities in task dimension among studies, low statistical power due to small sample size, and the intrinsic uncertainty of a modality that measures activity indirectly limit the comprehensive understanding of the results from PET studies. These difficulties prompted us to undertake a metaanalysis of PET studies on tinnitus using a coordinate-based technique (activation-likelihood estimation) to retrieve the most consistent activation areas across different task dimensions and to compare the results with those from other imaging modalities. We performed 2 activation-likelihood estimation metaanalyses on data from 10 studies with 56 foci in which we examined the contrast between tinnitus individuals and controls and the difference in activation between sound stimuli and resting state in tinnitus individuals. The studies show that the most consistently activated regions in tinnitus subjects, compared with controls, were the left primary and bilateral secondary auditory cortices, left middle and bilateral inferior temporal gyri, left parahippocampal area, left geniculum body, left precuneus, right anterior cingulate cortex, right claustrum, right middle and inferior frontal gyri, and right angular gyrus. The relatively activated area under sound stimuli, compared with resting state, in tinnitus subjects was the secondary auditory cortex. Our study reconfirms the findings of previous quantitative electroencephalography or magnetoencephalography studies because most of the 14 brain areas with significant activation found in our metaanalysis replicate these earlier data. Our results suggest that the areas described in the tinnitus network are solidly replicable regardless of the applied functional imaging technique. This study proves that PET is a useful modality for tinnitus research and solidifies human tinnitus research itself by confirming previously described brain areas involved in the generation and maintenance of tinnitus.
doi_str_mv 10.2967/jnumed.112.102939
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082237299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795366241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-249e5eb17f5ff3263a194f2e9446d13b4af99d10450c274d2a0e7310705f31d03</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMotlZ_gBsJuHEzNTevmbiTUh-g6KKuh3Qm0YzzqJOM0H9valsQVyG53zmcm4PQOZApVTK9rtqhMeUUgE6BUMXUARqDYCIRUqaHaExAQiIEESN04n1FCJFZlh2jEaUK0ixjY1Q969XKte84uLZ1YfBJb2odTImXvXYt1kVw3zq4rr3B-u81qd2nqd1H15XY-OCa31fcmKB1q-u1dx53Fr_OF9iHoXTGn6Ijq2tvznbnBL3dzRezh-Tp5f5xdvuUFJxlIaFcGWGWkFphLaOSaVDcUqM4lyWwJddWqRIIF6SgKS-pJiZlQFIiLIOSsAm62vqu-u5riNnyxvnC1LVuTTf4HEhGKUupUhG9_IdW3dDH-JEC4MClBBYp2FJF33nfG5uv-rhvv45W-aaIfFtE1NB8W0TUXOych-VmtFfsf579AJIJhb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1114146613</pqid></control><display><type>article</type><title>Mapping tinnitus-related brain activation: an activation-likelihood estimation metaanalysis of PET studies</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Song, Jae-Jin ; De Ridder, Dirk ; Van de Heyning, Paul ; Vanneste, Sven</creator><creatorcontrib>Song, Jae-Jin ; De Ridder, Dirk ; Van de Heyning, Paul ; Vanneste, Sven</creatorcontrib><description>In tinnitus, PET and other functional imaging modalities have shown functional changes not only in the auditory cortex but also in nonauditory regions such as the limbic, frontal, and parietal areas. Nonetheless, disparities in task dimension among studies, low statistical power due to small sample size, and the intrinsic uncertainty of a modality that measures activity indirectly limit the comprehensive understanding of the results from PET studies. These difficulties prompted us to undertake a metaanalysis of PET studies on tinnitus using a coordinate-based technique (activation-likelihood estimation) to retrieve the most consistent activation areas across different task dimensions and to compare the results with those from other imaging modalities. We performed 2 activation-likelihood estimation metaanalyses on data from 10 studies with 56 foci in which we examined the contrast between tinnitus individuals and controls and the difference in activation between sound stimuli and resting state in tinnitus individuals. The studies show that the most consistently activated regions in tinnitus subjects, compared with controls, were the left primary and bilateral secondary auditory cortices, left middle and bilateral inferior temporal gyri, left parahippocampal area, left geniculum body, left precuneus, right anterior cingulate cortex, right claustrum, right middle and inferior frontal gyri, and right angular gyrus. The relatively activated area under sound stimuli, compared with resting state, in tinnitus subjects was the secondary auditory cortex. Our study reconfirms the findings of previous quantitative electroencephalography or magnetoencephalography studies because most of the 14 brain areas with significant activation found in our metaanalysis replicate these earlier data. Our results suggest that the areas described in the tinnitus network are solidly replicable regardless of the applied functional imaging technique. This study proves that PET is a useful modality for tinnitus research and solidifies human tinnitus research itself by confirming previously described brain areas involved in the generation and maintenance of tinnitus.</description><identifier>ISSN: 0161-5505</identifier><identifier>EISSN: 1535-5667</identifier><identifier>EISSN: 2159-662X</identifier><identifier>DOI: 10.2967/jnumed.112.102939</identifier><identifier>PMID: 22917883</identifier><identifier>CODEN: JNMEAQ</identifier><language>eng</language><publisher>United States: Society of Nuclear Medicine</publisher><subject>Acoustic Stimulation ; Brain ; Brain - diagnostic imaging ; Brain - physiopathology ; Brain Mapping - methods ; Ear diseases ; Humans ; Likelihood Functions ; Magnetic Resonance Imaging ; Meta-analysis ; Nuclear medicine ; Positron-Emission Tomography - methods ; Probability distribution ; Rest ; Tinnitus ; Tinnitus - diagnostic imaging ; Tinnitus - physiopathology ; Tomography</subject><ispartof>Journal of Nuclear Medicine, 2012-10, Vol.53 (10), p.1550-1557</ispartof><rights>Copyright Society of Nuclear Medicine Oct 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-249e5eb17f5ff3263a194f2e9446d13b4af99d10450c274d2a0e7310705f31d03</citedby><cites>FETCH-LOGICAL-c438t-249e5eb17f5ff3263a194f2e9446d13b4af99d10450c274d2a0e7310705f31d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22917883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Jae-Jin</creatorcontrib><creatorcontrib>De Ridder, Dirk</creatorcontrib><creatorcontrib>Van de Heyning, Paul</creatorcontrib><creatorcontrib>Vanneste, Sven</creatorcontrib><title>Mapping tinnitus-related brain activation: an activation-likelihood estimation metaanalysis of PET studies</title><title>Journal of Nuclear Medicine</title><addtitle>J Nucl Med</addtitle><description>In tinnitus, PET and other functional imaging modalities have shown functional changes not only in the auditory cortex but also in nonauditory regions such as the limbic, frontal, and parietal areas. Nonetheless, disparities in task dimension among studies, low statistical power due to small sample size, and the intrinsic uncertainty of a modality that measures activity indirectly limit the comprehensive understanding of the results from PET studies. These difficulties prompted us to undertake a metaanalysis of PET studies on tinnitus using a coordinate-based technique (activation-likelihood estimation) to retrieve the most consistent activation areas across different task dimensions and to compare the results with those from other imaging modalities. We performed 2 activation-likelihood estimation metaanalyses on data from 10 studies with 56 foci in which we examined the contrast between tinnitus individuals and controls and the difference in activation between sound stimuli and resting state in tinnitus individuals. The studies show that the most consistently activated regions in tinnitus subjects, compared with controls, were the left primary and bilateral secondary auditory cortices, left middle and bilateral inferior temporal gyri, left parahippocampal area, left geniculum body, left precuneus, right anterior cingulate cortex, right claustrum, right middle and inferior frontal gyri, and right angular gyrus. The relatively activated area under sound stimuli, compared with resting state, in tinnitus subjects was the secondary auditory cortex. Our study reconfirms the findings of previous quantitative electroencephalography or magnetoencephalography studies because most of the 14 brain areas with significant activation found in our metaanalysis replicate these earlier data. Our results suggest that the areas described in the tinnitus network are solidly replicable regardless of the applied functional imaging technique. This study proves that PET is a useful modality for tinnitus research and solidifies human tinnitus research itself by confirming previously described brain areas involved in the generation and maintenance of tinnitus.</description><subject>Acoustic Stimulation</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiopathology</subject><subject>Brain Mapping - methods</subject><subject>Ear diseases</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Magnetic Resonance Imaging</subject><subject>Meta-analysis</subject><subject>Nuclear medicine</subject><subject>Positron-Emission Tomography - methods</subject><subject>Probability distribution</subject><subject>Rest</subject><subject>Tinnitus</subject><subject>Tinnitus - diagnostic imaging</subject><subject>Tinnitus - physiopathology</subject><subject>Tomography</subject><issn>0161-5505</issn><issn>1535-5667</issn><issn>2159-662X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkUtLAzEUhYMotlZ_gBsJuHEzNTevmbiTUh-g6KKuh3Qm0YzzqJOM0H9valsQVyG53zmcm4PQOZApVTK9rtqhMeUUgE6BUMXUARqDYCIRUqaHaExAQiIEESN04n1FCJFZlh2jEaUK0ixjY1Q969XKte84uLZ1YfBJb2odTImXvXYt1kVw3zq4rr3B-u81qd2nqd1H15XY-OCa31fcmKB1q-u1dx53Fr_OF9iHoXTGn6Ijq2tvznbnBL3dzRezh-Tp5f5xdvuUFJxlIaFcGWGWkFphLaOSaVDcUqM4lyWwJddWqRIIF6SgKS-pJiZlQFIiLIOSsAm62vqu-u5riNnyxvnC1LVuTTf4HEhGKUupUhG9_IdW3dDH-JEC4MClBBYp2FJF33nfG5uv-rhvv45W-aaIfFtE1NB8W0TUXOych-VmtFfsf579AJIJhb4</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Song, Jae-Jin</creator><creator>De Ridder, Dirk</creator><creator>Van de Heyning, Paul</creator><creator>Vanneste, Sven</creator><general>Society of Nuclear Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20121001</creationdate><title>Mapping tinnitus-related brain activation: an activation-likelihood estimation metaanalysis of PET studies</title><author>Song, Jae-Jin ; De Ridder, Dirk ; Van de Heyning, Paul ; Vanneste, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-249e5eb17f5ff3263a194f2e9446d13b4af99d10450c274d2a0e7310705f31d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustic Stimulation</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiopathology</topic><topic>Brain Mapping - methods</topic><topic>Ear diseases</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Magnetic Resonance Imaging</topic><topic>Meta-analysis</topic><topic>Nuclear medicine</topic><topic>Positron-Emission Tomography - methods</topic><topic>Probability distribution</topic><topic>Rest</topic><topic>Tinnitus</topic><topic>Tinnitus - diagnostic imaging</topic><topic>Tinnitus - physiopathology</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jae-Jin</creatorcontrib><creatorcontrib>De Ridder, Dirk</creatorcontrib><creatorcontrib>Van de Heyning, Paul</creatorcontrib><creatorcontrib>Vanneste, Sven</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Nuclear Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jae-Jin</au><au>De Ridder, Dirk</au><au>Van de Heyning, Paul</au><au>Vanneste, Sven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping tinnitus-related brain activation: an activation-likelihood estimation metaanalysis of PET studies</atitle><jtitle>Journal of Nuclear Medicine</jtitle><addtitle>J Nucl Med</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>53</volume><issue>10</issue><spage>1550</spage><epage>1557</epage><pages>1550-1557</pages><issn>0161-5505</issn><eissn>1535-5667</eissn><eissn>2159-662X</eissn><coden>JNMEAQ</coden><abstract>In tinnitus, PET and other functional imaging modalities have shown functional changes not only in the auditory cortex but also in nonauditory regions such as the limbic, frontal, and parietal areas. Nonetheless, disparities in task dimension among studies, low statistical power due to small sample size, and the intrinsic uncertainty of a modality that measures activity indirectly limit the comprehensive understanding of the results from PET studies. These difficulties prompted us to undertake a metaanalysis of PET studies on tinnitus using a coordinate-based technique (activation-likelihood estimation) to retrieve the most consistent activation areas across different task dimensions and to compare the results with those from other imaging modalities. We performed 2 activation-likelihood estimation metaanalyses on data from 10 studies with 56 foci in which we examined the contrast between tinnitus individuals and controls and the difference in activation between sound stimuli and resting state in tinnitus individuals. The studies show that the most consistently activated regions in tinnitus subjects, compared with controls, were the left primary and bilateral secondary auditory cortices, left middle and bilateral inferior temporal gyri, left parahippocampal area, left geniculum body, left precuneus, right anterior cingulate cortex, right claustrum, right middle and inferior frontal gyri, and right angular gyrus. The relatively activated area under sound stimuli, compared with resting state, in tinnitus subjects was the secondary auditory cortex. Our study reconfirms the findings of previous quantitative electroencephalography or magnetoencephalography studies because most of the 14 brain areas with significant activation found in our metaanalysis replicate these earlier data. Our results suggest that the areas described in the tinnitus network are solidly replicable regardless of the applied functional imaging technique. This study proves that PET is a useful modality for tinnitus research and solidifies human tinnitus research itself by confirming previously described brain areas involved in the generation and maintenance of tinnitus.</abstract><cop>United States</cop><pub>Society of Nuclear Medicine</pub><pmid>22917883</pmid><doi>10.2967/jnumed.112.102939</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0161-5505
ispartof Journal of Nuclear Medicine, 2012-10, Vol.53 (10), p.1550-1557
issn 0161-5505
1535-5667
2159-662X
language eng
recordid cdi_proquest_miscellaneous_1082237299
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Acoustic Stimulation
Brain
Brain - diagnostic imaging
Brain - physiopathology
Brain Mapping - methods
Ear diseases
Humans
Likelihood Functions
Magnetic Resonance Imaging
Meta-analysis
Nuclear medicine
Positron-Emission Tomography - methods
Probability distribution
Rest
Tinnitus
Tinnitus - diagnostic imaging
Tinnitus - physiopathology
Tomography
title Mapping tinnitus-related brain activation: an activation-likelihood estimation metaanalysis of PET studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20tinnitus-related%20brain%20activation:%20an%20activation-likelihood%20estimation%20metaanalysis%20of%20PET%20studies&rft.jtitle=Journal%20of%20Nuclear%20Medicine&rft.au=Song,%20Jae-Jin&rft.date=2012-10-01&rft.volume=53&rft.issue=10&rft.spage=1550&rft.epage=1557&rft.pages=1550-1557&rft.issn=0161-5505&rft.eissn=1535-5667&rft.coden=JNMEAQ&rft_id=info:doi/10.2967/jnumed.112.102939&rft_dat=%3Cproquest_cross%3E2795366241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1114146613&rft_id=info:pmid/22917883&rfr_iscdi=true