Micromechanical methodology for fatigue in cardiovascular stents
► A novel micromechanical fatigue crack initiation model for stents is presented. ► Importance of size-scale consistency between failure and constitutive models shown. ► Microstructural fatigue parameters predict realistic scatter for crack initiation. ► Conventional continuum techniques yield unrea...
Gespeichert in:
Veröffentlicht in: | International journal of fatigue 2012-11, Vol.44, p.202-216 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 216 |
---|---|
container_issue | |
container_start_page | 202 |
container_title | International journal of fatigue |
container_volume | 44 |
creator | Sweeney, C.A. McHugh, P.E. McGarry, J.P. Leen, S.B. |
description | ► A novel micromechanical fatigue crack initiation model for stents is presented. ► Importance of size-scale consistency between failure and constitutive models shown. ► Microstructural fatigue parameters predict realistic scatter for crack initiation. ► Conventional continuum techniques yield unrealistic scatter in life predictions. ► Crystal level kinematic hardening needed to model cyclic strain energy dissipation.
A finite element based micromechanical methodology for cyclic plasticity and fatigue crack initiation in cardiovascular stents is presented. The methodology is based on the combined use of a (global) three-dimensional continuum stent-artery model, a local micromechanical stent model, the development of a combined kinematic–isotropic hardening crystal plasticity constitutive formulation, and the application of microstructure sensitive crack initiation parameters. The methodology is applied to 316L stainless steel stents with random polycrystalline microstructures, based on scanning electron microscopy images of the grain morphology, under realistic elastic–plastic loading histories, including crimp, deployment and in vivo systolic–diastolic cyclic pressurisation. Identification of the micromechanical cyclic plasticity and failure constants is achieved via application of an objective function and a unit cell representative volume element for 316L stainless steel. Cyclic stent deformations are compared with the J2-predicted response and conventional fatigue life prediction techniques. It is shown that micromechanical fatigue analysis of stents is necessary due to the significant predicted effects of material inhomogeneity on micro-plasticity and micro-crack initiation. |
doi_str_mv | 10.1016/j.ijfatigue.2012.04.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082219632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112312001624</els_id><sourcerecordid>1082219632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-1bb4766a43047031b29dda79483a2ed03a8fc547b87ac45bbc9a8cf5dae6b1f93</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqXwG8iCxJLgV-J4o6p4SUUsMFs3jtM6SuJiJ5X673HVqivTXb57js6H0D3BGcGkeGoz2zYw2vVkMooJzTDPMKUXaEZKIVPGc3qJZphwmhJC2TW6CaHFGEss8hl6_rTau97oDQxWQ5f0Zty42nVuvU8a55NTdGKHRIOvrdtB0FMHPgmjGcZwi64a6IK5O905-nl9-V6-p6uvt4_lYpVqJsoxJVXFRVEAZ5gLzEhFZV2DkLxkQE2NGZSNzrmoSgGa51WlJZS6yWswRUUayebo8Zi79e53MmFUvQ3adB0Mxk1BEVxSSmTBaETFEY3LQvCmUVtve_D7CKmDM9WqszN1cKYwV9FZ_Hw4lcSR0DUeBm3D-Z0WlEue55FbHDkTF--s8SpoawZtauuNHlXt7L9dfwmKh2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082219632</pqid></control><display><type>article</type><title>Micromechanical methodology for fatigue in cardiovascular stents</title><source>Elsevier ScienceDirect Journals</source><creator>Sweeney, C.A. ; McHugh, P.E. ; McGarry, J.P. ; Leen, S.B.</creator><creatorcontrib>Sweeney, C.A. ; McHugh, P.E. ; McGarry, J.P. ; Leen, S.B.</creatorcontrib><description>► A novel micromechanical fatigue crack initiation model for stents is presented. ► Importance of size-scale consistency between failure and constitutive models shown. ► Microstructural fatigue parameters predict realistic scatter for crack initiation. ► Conventional continuum techniques yield unrealistic scatter in life predictions. ► Crystal level kinematic hardening needed to model cyclic strain energy dissipation.
A finite element based micromechanical methodology for cyclic plasticity and fatigue crack initiation in cardiovascular stents is presented. The methodology is based on the combined use of a (global) three-dimensional continuum stent-artery model, a local micromechanical stent model, the development of a combined kinematic–isotropic hardening crystal plasticity constitutive formulation, and the application of microstructure sensitive crack initiation parameters. The methodology is applied to 316L stainless steel stents with random polycrystalline microstructures, based on scanning electron microscopy images of the grain morphology, under realistic elastic–plastic loading histories, including crimp, deployment and in vivo systolic–diastolic cyclic pressurisation. Identification of the micromechanical cyclic plasticity and failure constants is achieved via application of an objective function and a unit cell representative volume element for 316L stainless steel. Cyclic stent deformations are compared with the J2-predicted response and conventional fatigue life prediction techniques. It is shown that micromechanical fatigue analysis of stents is necessary due to the significant predicted effects of material inhomogeneity on micro-plasticity and micro-crack initiation.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2012.04.022</identifier><identifier>CODEN: IJFADB</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Austenitic stainless steels ; Crack nucleation ; Cyclic hardening ; Exact sciences and technology ; Fatigue ; Fatigue (materials) ; Fatigue failure ; Heat resistant steels ; Life prediction ; Mathematical models ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Methodology ; Micromechanics ; Plasticity ; Stents ; Surgical implants</subject><ispartof>International journal of fatigue, 2012-11, Vol.44, p.202-216</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-1bb4766a43047031b29dda79483a2ed03a8fc547b87ac45bbc9a8cf5dae6b1f93</citedby><cites>FETCH-LOGICAL-c378t-1bb4766a43047031b29dda79483a2ed03a8fc547b87ac45bbc9a8cf5dae6b1f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142112312001624$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26249455$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sweeney, C.A.</creatorcontrib><creatorcontrib>McHugh, P.E.</creatorcontrib><creatorcontrib>McGarry, J.P.</creatorcontrib><creatorcontrib>Leen, S.B.</creatorcontrib><title>Micromechanical methodology for fatigue in cardiovascular stents</title><title>International journal of fatigue</title><description>► A novel micromechanical fatigue crack initiation model for stents is presented. ► Importance of size-scale consistency between failure and constitutive models shown. ► Microstructural fatigue parameters predict realistic scatter for crack initiation. ► Conventional continuum techniques yield unrealistic scatter in life predictions. ► Crystal level kinematic hardening needed to model cyclic strain energy dissipation.
A finite element based micromechanical methodology for cyclic plasticity and fatigue crack initiation in cardiovascular stents is presented. The methodology is based on the combined use of a (global) three-dimensional continuum stent-artery model, a local micromechanical stent model, the development of a combined kinematic–isotropic hardening crystal plasticity constitutive formulation, and the application of microstructure sensitive crack initiation parameters. The methodology is applied to 316L stainless steel stents with random polycrystalline microstructures, based on scanning electron microscopy images of the grain morphology, under realistic elastic–plastic loading histories, including crimp, deployment and in vivo systolic–diastolic cyclic pressurisation. Identification of the micromechanical cyclic plasticity and failure constants is achieved via application of an objective function and a unit cell representative volume element for 316L stainless steel. Cyclic stent deformations are compared with the J2-predicted response and conventional fatigue life prediction techniques. It is shown that micromechanical fatigue analysis of stents is necessary due to the significant predicted effects of material inhomogeneity on micro-plasticity and micro-crack initiation.</description><subject>Applied sciences</subject><subject>Austenitic stainless steels</subject><subject>Crack nucleation</subject><subject>Cyclic hardening</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue (materials)</subject><subject>Fatigue failure</subject><subject>Heat resistant steels</subject><subject>Life prediction</subject><subject>Mathematical models</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Methodology</subject><subject>Micromechanics</subject><subject>Plasticity</subject><subject>Stents</subject><subject>Surgical implants</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqXwG8iCxJLgV-J4o6p4SUUsMFs3jtM6SuJiJ5X673HVqivTXb57js6H0D3BGcGkeGoz2zYw2vVkMooJzTDPMKUXaEZKIVPGc3qJZphwmhJC2TW6CaHFGEss8hl6_rTau97oDQxWQ5f0Zty42nVuvU8a55NTdGKHRIOvrdtB0FMHPgmjGcZwi64a6IK5O905-nl9-V6-p6uvt4_lYpVqJsoxJVXFRVEAZ5gLzEhFZV2DkLxkQE2NGZSNzrmoSgGa51WlJZS6yWswRUUayebo8Zi79e53MmFUvQ3adB0Mxk1BEVxSSmTBaETFEY3LQvCmUVtve_D7CKmDM9WqszN1cKYwV9FZ_Hw4lcSR0DUeBm3D-Z0WlEue55FbHDkTF--s8SpoawZtauuNHlXt7L9dfwmKh2E</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Sweeney, C.A.</creator><creator>McHugh, P.E.</creator><creator>McGarry, J.P.</creator><creator>Leen, S.B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20121101</creationdate><title>Micromechanical methodology for fatigue in cardiovascular stents</title><author>Sweeney, C.A. ; McHugh, P.E. ; McGarry, J.P. ; Leen, S.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-1bb4766a43047031b29dda79483a2ed03a8fc547b87ac45bbc9a8cf5dae6b1f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Austenitic stainless steels</topic><topic>Crack nucleation</topic><topic>Cyclic hardening</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue (materials)</topic><topic>Fatigue failure</topic><topic>Heat resistant steels</topic><topic>Life prediction</topic><topic>Mathematical models</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Methodology</topic><topic>Micromechanics</topic><topic>Plasticity</topic><topic>Stents</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sweeney, C.A.</creatorcontrib><creatorcontrib>McHugh, P.E.</creatorcontrib><creatorcontrib>McGarry, J.P.</creatorcontrib><creatorcontrib>Leen, S.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sweeney, C.A.</au><au>McHugh, P.E.</au><au>McGarry, J.P.</au><au>Leen, S.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical methodology for fatigue in cardiovascular stents</atitle><jtitle>International journal of fatigue</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>44</volume><spage>202</spage><epage>216</epage><pages>202-216</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><coden>IJFADB</coden><abstract>► A novel micromechanical fatigue crack initiation model for stents is presented. ► Importance of size-scale consistency between failure and constitutive models shown. ► Microstructural fatigue parameters predict realistic scatter for crack initiation. ► Conventional continuum techniques yield unrealistic scatter in life predictions. ► Crystal level kinematic hardening needed to model cyclic strain energy dissipation.
A finite element based micromechanical methodology for cyclic plasticity and fatigue crack initiation in cardiovascular stents is presented. The methodology is based on the combined use of a (global) three-dimensional continuum stent-artery model, a local micromechanical stent model, the development of a combined kinematic–isotropic hardening crystal plasticity constitutive formulation, and the application of microstructure sensitive crack initiation parameters. The methodology is applied to 316L stainless steel stents with random polycrystalline microstructures, based on scanning electron microscopy images of the grain morphology, under realistic elastic–plastic loading histories, including crimp, deployment and in vivo systolic–diastolic cyclic pressurisation. Identification of the micromechanical cyclic plasticity and failure constants is achieved via application of an objective function and a unit cell representative volume element for 316L stainless steel. Cyclic stent deformations are compared with the J2-predicted response and conventional fatigue life prediction techniques. It is shown that micromechanical fatigue analysis of stents is necessary due to the significant predicted effects of material inhomogeneity on micro-plasticity and micro-crack initiation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2012.04.022</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-1123 |
ispartof | International journal of fatigue, 2012-11, Vol.44, p.202-216 |
issn | 0142-1123 1879-3452 |
language | eng |
recordid | cdi_proquest_miscellaneous_1082219632 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Austenitic stainless steels Crack nucleation Cyclic hardening Exact sciences and technology Fatigue Fatigue (materials) Fatigue failure Heat resistant steels Life prediction Mathematical models Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Methodology Micromechanics Plasticity Stents Surgical implants |
title | Micromechanical methodology for fatigue in cardiovascular stents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20methodology%20for%20fatigue%20in%20cardiovascular%20stents&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Sweeney,%20C.A.&rft.date=2012-11-01&rft.volume=44&rft.spage=202&rft.epage=216&rft.pages=202-216&rft.issn=0142-1123&rft.eissn=1879-3452&rft.coden=IJFADB&rft_id=info:doi/10.1016/j.ijfatigue.2012.04.022&rft_dat=%3Cproquest_cross%3E1082219632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082219632&rft_id=info:pmid/&rft_els_id=S0142112312001624&rfr_iscdi=true |