Micromechanical methodology for fatigue in cardiovascular stents

► A novel micromechanical fatigue crack initiation model for stents is presented. ► Importance of size-scale consistency between failure and constitutive models shown. ► Microstructural fatigue parameters predict realistic scatter for crack initiation. ► Conventional continuum techniques yield unrea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2012-11, Vol.44, p.202-216
Hauptverfasser: Sweeney, C.A., McHugh, P.E., McGarry, J.P., Leen, S.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue
container_start_page 202
container_title International journal of fatigue
container_volume 44
creator Sweeney, C.A.
McHugh, P.E.
McGarry, J.P.
Leen, S.B.
description ► A novel micromechanical fatigue crack initiation model for stents is presented. ► Importance of size-scale consistency between failure and constitutive models shown. ► Microstructural fatigue parameters predict realistic scatter for crack initiation. ► Conventional continuum techniques yield unrealistic scatter in life predictions. ► Crystal level kinematic hardening needed to model cyclic strain energy dissipation. A finite element based micromechanical methodology for cyclic plasticity and fatigue crack initiation in cardiovascular stents is presented. The methodology is based on the combined use of a (global) three-dimensional continuum stent-artery model, a local micromechanical stent model, the development of a combined kinematic–isotropic hardening crystal plasticity constitutive formulation, and the application of microstructure sensitive crack initiation parameters. The methodology is applied to 316L stainless steel stents with random polycrystalline microstructures, based on scanning electron microscopy images of the grain morphology, under realistic elastic–plastic loading histories, including crimp, deployment and in vivo systolic–diastolic cyclic pressurisation. Identification of the micromechanical cyclic plasticity and failure constants is achieved via application of an objective function and a unit cell representative volume element for 316L stainless steel. Cyclic stent deformations are compared with the J2-predicted response and conventional fatigue life prediction techniques. It is shown that micromechanical fatigue analysis of stents is necessary due to the significant predicted effects of material inhomogeneity on micro-plasticity and micro-crack initiation.
doi_str_mv 10.1016/j.ijfatigue.2012.04.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082219632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112312001624</els_id><sourcerecordid>1082219632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-1bb4766a43047031b29dda79483a2ed03a8fc547b87ac45bbc9a8cf5dae6b1f93</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqXwG8iCxJLgV-J4o6p4SUUsMFs3jtM6SuJiJ5X673HVqivTXb57js6H0D3BGcGkeGoz2zYw2vVkMooJzTDPMKUXaEZKIVPGc3qJZphwmhJC2TW6CaHFGEss8hl6_rTau97oDQxWQ5f0Zty42nVuvU8a55NTdGKHRIOvrdtB0FMHPgmjGcZwi64a6IK5O905-nl9-V6-p6uvt4_lYpVqJsoxJVXFRVEAZ5gLzEhFZV2DkLxkQE2NGZSNzrmoSgGa51WlJZS6yWswRUUayebo8Zi79e53MmFUvQ3adB0Mxk1BEVxSSmTBaETFEY3LQvCmUVtve_D7CKmDM9WqszN1cKYwV9FZ_Hw4lcSR0DUeBm3D-Z0WlEue55FbHDkTF--s8SpoawZtauuNHlXt7L9dfwmKh2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082219632</pqid></control><display><type>article</type><title>Micromechanical methodology for fatigue in cardiovascular stents</title><source>Elsevier ScienceDirect Journals</source><creator>Sweeney, C.A. ; McHugh, P.E. ; McGarry, J.P. ; Leen, S.B.</creator><creatorcontrib>Sweeney, C.A. ; McHugh, P.E. ; McGarry, J.P. ; Leen, S.B.</creatorcontrib><description>► A novel micromechanical fatigue crack initiation model for stents is presented. ► Importance of size-scale consistency between failure and constitutive models shown. ► Microstructural fatigue parameters predict realistic scatter for crack initiation. ► Conventional continuum techniques yield unrealistic scatter in life predictions. ► Crystal level kinematic hardening needed to model cyclic strain energy dissipation. A finite element based micromechanical methodology for cyclic plasticity and fatigue crack initiation in cardiovascular stents is presented. The methodology is based on the combined use of a (global) three-dimensional continuum stent-artery model, a local micromechanical stent model, the development of a combined kinematic–isotropic hardening crystal plasticity constitutive formulation, and the application of microstructure sensitive crack initiation parameters. The methodology is applied to 316L stainless steel stents with random polycrystalline microstructures, based on scanning electron microscopy images of the grain morphology, under realistic elastic–plastic loading histories, including crimp, deployment and in vivo systolic–diastolic cyclic pressurisation. Identification of the micromechanical cyclic plasticity and failure constants is achieved via application of an objective function and a unit cell representative volume element for 316L stainless steel. Cyclic stent deformations are compared with the J2-predicted response and conventional fatigue life prediction techniques. It is shown that micromechanical fatigue analysis of stents is necessary due to the significant predicted effects of material inhomogeneity on micro-plasticity and micro-crack initiation.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2012.04.022</identifier><identifier>CODEN: IJFADB</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Austenitic stainless steels ; Crack nucleation ; Cyclic hardening ; Exact sciences and technology ; Fatigue ; Fatigue (materials) ; Fatigue failure ; Heat resistant steels ; Life prediction ; Mathematical models ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Methodology ; Micromechanics ; Plasticity ; Stents ; Surgical implants</subject><ispartof>International journal of fatigue, 2012-11, Vol.44, p.202-216</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-1bb4766a43047031b29dda79483a2ed03a8fc547b87ac45bbc9a8cf5dae6b1f93</citedby><cites>FETCH-LOGICAL-c378t-1bb4766a43047031b29dda79483a2ed03a8fc547b87ac45bbc9a8cf5dae6b1f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142112312001624$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26249455$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sweeney, C.A.</creatorcontrib><creatorcontrib>McHugh, P.E.</creatorcontrib><creatorcontrib>McGarry, J.P.</creatorcontrib><creatorcontrib>Leen, S.B.</creatorcontrib><title>Micromechanical methodology for fatigue in cardiovascular stents</title><title>International journal of fatigue</title><description>► A novel micromechanical fatigue crack initiation model for stents is presented. ► Importance of size-scale consistency between failure and constitutive models shown. ► Microstructural fatigue parameters predict realistic scatter for crack initiation. ► Conventional continuum techniques yield unrealistic scatter in life predictions. ► Crystal level kinematic hardening needed to model cyclic strain energy dissipation. A finite element based micromechanical methodology for cyclic plasticity and fatigue crack initiation in cardiovascular stents is presented. The methodology is based on the combined use of a (global) three-dimensional continuum stent-artery model, a local micromechanical stent model, the development of a combined kinematic–isotropic hardening crystal plasticity constitutive formulation, and the application of microstructure sensitive crack initiation parameters. The methodology is applied to 316L stainless steel stents with random polycrystalline microstructures, based on scanning electron microscopy images of the grain morphology, under realistic elastic–plastic loading histories, including crimp, deployment and in vivo systolic–diastolic cyclic pressurisation. Identification of the micromechanical cyclic plasticity and failure constants is achieved via application of an objective function and a unit cell representative volume element for 316L stainless steel. Cyclic stent deformations are compared with the J2-predicted response and conventional fatigue life prediction techniques. It is shown that micromechanical fatigue analysis of stents is necessary due to the significant predicted effects of material inhomogeneity on micro-plasticity and micro-crack initiation.</description><subject>Applied sciences</subject><subject>Austenitic stainless steels</subject><subject>Crack nucleation</subject><subject>Cyclic hardening</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue (materials)</subject><subject>Fatigue failure</subject><subject>Heat resistant steels</subject><subject>Life prediction</subject><subject>Mathematical models</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Methodology</subject><subject>Micromechanics</subject><subject>Plasticity</subject><subject>Stents</subject><subject>Surgical implants</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqXwG8iCxJLgV-J4o6p4SUUsMFs3jtM6SuJiJ5X673HVqivTXb57js6H0D3BGcGkeGoz2zYw2vVkMooJzTDPMKUXaEZKIVPGc3qJZphwmhJC2TW6CaHFGEss8hl6_rTau97oDQxWQ5f0Zty42nVuvU8a55NTdGKHRIOvrdtB0FMHPgmjGcZwi64a6IK5O905-nl9-V6-p6uvt4_lYpVqJsoxJVXFRVEAZ5gLzEhFZV2DkLxkQE2NGZSNzrmoSgGa51WlJZS6yWswRUUayebo8Zi79e53MmFUvQ3adB0Mxk1BEVxSSmTBaETFEY3LQvCmUVtve_D7CKmDM9WqszN1cKYwV9FZ_Hw4lcSR0DUeBm3D-Z0WlEue55FbHDkTF--s8SpoawZtauuNHlXt7L9dfwmKh2E</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Sweeney, C.A.</creator><creator>McHugh, P.E.</creator><creator>McGarry, J.P.</creator><creator>Leen, S.B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20121101</creationdate><title>Micromechanical methodology for fatigue in cardiovascular stents</title><author>Sweeney, C.A. ; McHugh, P.E. ; McGarry, J.P. ; Leen, S.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-1bb4766a43047031b29dda79483a2ed03a8fc547b87ac45bbc9a8cf5dae6b1f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Austenitic stainless steels</topic><topic>Crack nucleation</topic><topic>Cyclic hardening</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue (materials)</topic><topic>Fatigue failure</topic><topic>Heat resistant steels</topic><topic>Life prediction</topic><topic>Mathematical models</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Methodology</topic><topic>Micromechanics</topic><topic>Plasticity</topic><topic>Stents</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sweeney, C.A.</creatorcontrib><creatorcontrib>McHugh, P.E.</creatorcontrib><creatorcontrib>McGarry, J.P.</creatorcontrib><creatorcontrib>Leen, S.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sweeney, C.A.</au><au>McHugh, P.E.</au><au>McGarry, J.P.</au><au>Leen, S.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical methodology for fatigue in cardiovascular stents</atitle><jtitle>International journal of fatigue</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>44</volume><spage>202</spage><epage>216</epage><pages>202-216</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><coden>IJFADB</coden><abstract>► A novel micromechanical fatigue crack initiation model for stents is presented. ► Importance of size-scale consistency between failure and constitutive models shown. ► Microstructural fatigue parameters predict realistic scatter for crack initiation. ► Conventional continuum techniques yield unrealistic scatter in life predictions. ► Crystal level kinematic hardening needed to model cyclic strain energy dissipation. A finite element based micromechanical methodology for cyclic plasticity and fatigue crack initiation in cardiovascular stents is presented. The methodology is based on the combined use of a (global) three-dimensional continuum stent-artery model, a local micromechanical stent model, the development of a combined kinematic–isotropic hardening crystal plasticity constitutive formulation, and the application of microstructure sensitive crack initiation parameters. The methodology is applied to 316L stainless steel stents with random polycrystalline microstructures, based on scanning electron microscopy images of the grain morphology, under realistic elastic–plastic loading histories, including crimp, deployment and in vivo systolic–diastolic cyclic pressurisation. Identification of the micromechanical cyclic plasticity and failure constants is achieved via application of an objective function and a unit cell representative volume element for 316L stainless steel. Cyclic stent deformations are compared with the J2-predicted response and conventional fatigue life prediction techniques. It is shown that micromechanical fatigue analysis of stents is necessary due to the significant predicted effects of material inhomogeneity on micro-plasticity and micro-crack initiation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2012.04.022</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2012-11, Vol.44, p.202-216
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_miscellaneous_1082219632
source Elsevier ScienceDirect Journals
subjects Applied sciences
Austenitic stainless steels
Crack nucleation
Cyclic hardening
Exact sciences and technology
Fatigue
Fatigue (materials)
Fatigue failure
Heat resistant steels
Life prediction
Mathematical models
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Methodology
Micromechanics
Plasticity
Stents
Surgical implants
title Micromechanical methodology for fatigue in cardiovascular stents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20methodology%20for%20fatigue%20in%20cardiovascular%20stents&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Sweeney,%20C.A.&rft.date=2012-11-01&rft.volume=44&rft.spage=202&rft.epage=216&rft.pages=202-216&rft.issn=0142-1123&rft.eissn=1879-3452&rft.coden=IJFADB&rft_id=info:doi/10.1016/j.ijfatigue.2012.04.022&rft_dat=%3Cproquest_cross%3E1082219632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082219632&rft_id=info:pmid/&rft_els_id=S0142112312001624&rfr_iscdi=true