Feature-Driven Data Exploration for Volumetric Rendering

We have developed an intuitive method to semiautomatically explore volumetric data in a focus-region-guided or value-driven way using a user-defined ray through the 3D volume and contour lines in the region of interest. After selecting a point of interest from a 2D perspective, which defines a ray t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2012-10, Vol.18 (10), p.1731-1743
Hauptverfasser: Woo, Insoo, Maciejewski, Ross, Gaither, Kelly P., Ebert, David S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1743
container_issue 10
container_start_page 1731
container_title IEEE transactions on visualization and computer graphics
container_volume 18
creator Woo, Insoo
Maciejewski, Ross
Gaither, Kelly P.
Ebert, David S.
description We have developed an intuitive method to semiautomatically explore volumetric data in a focus-region-guided or value-driven way using a user-defined ray through the 3D volume and contour lines in the region of interest. After selecting a point of interest from a 2D perspective, which defines a ray through the 3D volume, our method provides analytical tools to assist in narrowing the region of interest to a desired set of features. Feature layers are identified in a 1D scalar value profile with the ray and are used to define default rendering parameters, such as color and opacity mappings, and locate the center of the region of interest. Contour lines are generated based on the feature layer level sets within interactively selected slices of the focus region. Finally, we utilize feature-preserving filters and demonstrate the applicability of our scheme to noisy data.
doi_str_mv 10.1109/TVCG.2012.24
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082219326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6143934</ieee_id><sourcerecordid>2737858531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-359668d536b627da19862febf493a39210bf940c87ecdf1d7a04e795b56246443</originalsourceid><addsrcrecordid>eNqF0EtLw0AQB_BFFFurN2-CBLx4MHV39pU9Sl8KBUFqr2GTTCQlj7pJRL-9ia09ePE0A_NjmPkTcsnomDFq7lfryWIMlMEYxBEZMiOYTyVVx11PtfZBgRqQs7reUMqECMwpGQCAYUzyIQnmaJvWoT912QeW3tQ21pt9bvPK2SarSi-tnLeu8rbAxmWx94Jlgi4r387JSWrzGi_2dURe57PV5NFfPi-eJg9LP-YaGp9Lo1SQSK4iBTqxzAQKUoxSYbjlBhiNUiNoHGiMk5Ql2lKB2shIKhBKCD4it7u9W1e9t1g3YZHVMea5LbFq65B1vwDnEtT_lAYAzPAfevOHbqrWld0jneJcKUmp7tTdTsWuqmuHabh1WWHdV4fCPvywDz_sww-hP_V6v7SNCkwO-DftDlztQIaIh7Fighsu-DdzcYSe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033665007</pqid></control><display><type>article</type><title>Feature-Driven Data Exploration for Volumetric Rendering</title><source>IEEE Electronic Library (IEL)</source><creator>Woo, Insoo ; Maciejewski, Ross ; Gaither, Kelly P. ; Ebert, David S.</creator><creatorcontrib>Woo, Insoo ; Maciejewski, Ross ; Gaither, Kelly P. ; Ebert, David S.</creatorcontrib><description>We have developed an intuitive method to semiautomatically explore volumetric data in a focus-region-guided or value-driven way using a user-defined ray through the 3D volume and contour lines in the region of interest. After selecting a point of interest from a 2D perspective, which defines a ray through the 3D volume, our method provides analytical tools to assist in narrowing the region of interest to a desired set of features. Feature layers are identified in a 1D scalar value profile with the ray and are used to define default rendering parameters, such as color and opacity mappings, and locate the center of the region of interest. Contour lines are generated based on the feature layer level sets within interactively selected slices of the focus region. Finally, we utilize feature-preserving filters and demonstrate the applicability of our scheme to noisy data.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2012.24</identifier><identifier>PMID: 22291153</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biotechnology ; Color ; Computer Graphics ; Computer Simulation ; Data visualization ; Diagnostic Imaging ; Direct volume rendering ; Exploration ; Feature extraction ; focus+context visualization ; Histograms ; Humans ; Image color analysis ; Image Processing, Computer-Assisted - methods ; Mathematical analysis ; Noise measurement ; Opacity ; Rendering ; Rendering (computer graphics) ; Scalars ; Shape ; Studies ; Three dimensional ; Tornadoes ; transfer function ; Transfer functions</subject><ispartof>IEEE transactions on visualization and computer graphics, 2012-10, Vol.18 (10), p.1731-1743</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-359668d536b627da19862febf493a39210bf940c87ecdf1d7a04e795b56246443</citedby><cites>FETCH-LOGICAL-c372t-359668d536b627da19862febf493a39210bf940c87ecdf1d7a04e795b56246443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6143934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6143934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22291153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woo, Insoo</creatorcontrib><creatorcontrib>Maciejewski, Ross</creatorcontrib><creatorcontrib>Gaither, Kelly P.</creatorcontrib><creatorcontrib>Ebert, David S.</creatorcontrib><title>Feature-Driven Data Exploration for Volumetric Rendering</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>We have developed an intuitive method to semiautomatically explore volumetric data in a focus-region-guided or value-driven way using a user-defined ray through the 3D volume and contour lines in the region of interest. After selecting a point of interest from a 2D perspective, which defines a ray through the 3D volume, our method provides analytical tools to assist in narrowing the region of interest to a desired set of features. Feature layers are identified in a 1D scalar value profile with the ray and are used to define default rendering parameters, such as color and opacity mappings, and locate the center of the region of interest. Contour lines are generated based on the feature layer level sets within interactively selected slices of the focus region. Finally, we utilize feature-preserving filters and demonstrate the applicability of our scheme to noisy data.</description><subject>Algorithms</subject><subject>Biotechnology</subject><subject>Color</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Data visualization</subject><subject>Diagnostic Imaging</subject><subject>Direct volume rendering</subject><subject>Exploration</subject><subject>Feature extraction</subject><subject>focus+context visualization</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Mathematical analysis</subject><subject>Noise measurement</subject><subject>Opacity</subject><subject>Rendering</subject><subject>Rendering (computer graphics)</subject><subject>Scalars</subject><subject>Shape</subject><subject>Studies</subject><subject>Three dimensional</subject><subject>Tornadoes</subject><subject>transfer function</subject><subject>Transfer functions</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0EtLw0AQB_BFFFurN2-CBLx4MHV39pU9Sl8KBUFqr2GTTCQlj7pJRL-9ia09ePE0A_NjmPkTcsnomDFq7lfryWIMlMEYxBEZMiOYTyVVx11PtfZBgRqQs7reUMqECMwpGQCAYUzyIQnmaJvWoT912QeW3tQ21pt9bvPK2SarSi-tnLeu8rbAxmWx94Jlgi4r387JSWrzGi_2dURe57PV5NFfPi-eJg9LP-YaGp9Lo1SQSK4iBTqxzAQKUoxSYbjlBhiNUiNoHGiMk5Ql2lKB2shIKhBKCD4it7u9W1e9t1g3YZHVMea5LbFq65B1vwDnEtT_lAYAzPAfevOHbqrWld0jneJcKUmp7tTdTsWuqmuHabh1WWHdV4fCPvywDz_sww-hP_V6v7SNCkwO-DftDlztQIaIh7Fighsu-DdzcYSe</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Woo, Insoo</creator><creator>Maciejewski, Ross</creator><creator>Gaither, Kelly P.</creator><creator>Ebert, David S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20121001</creationdate><title>Feature-Driven Data Exploration for Volumetric Rendering</title><author>Woo, Insoo ; Maciejewski, Ross ; Gaither, Kelly P. ; Ebert, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-359668d536b627da19862febf493a39210bf940c87ecdf1d7a04e795b56246443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Biotechnology</topic><topic>Color</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Data visualization</topic><topic>Diagnostic Imaging</topic><topic>Direct volume rendering</topic><topic>Exploration</topic><topic>Feature extraction</topic><topic>focus+context visualization</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Mathematical analysis</topic><topic>Noise measurement</topic><topic>Opacity</topic><topic>Rendering</topic><topic>Rendering (computer graphics)</topic><topic>Scalars</topic><topic>Shape</topic><topic>Studies</topic><topic>Three dimensional</topic><topic>Tornadoes</topic><topic>transfer function</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woo, Insoo</creatorcontrib><creatorcontrib>Maciejewski, Ross</creatorcontrib><creatorcontrib>Gaither, Kelly P.</creatorcontrib><creatorcontrib>Ebert, David S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Woo, Insoo</au><au>Maciejewski, Ross</au><au>Gaither, Kelly P.</au><au>Ebert, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature-Driven Data Exploration for Volumetric Rendering</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>18</volume><issue>10</issue><spage>1731</spage><epage>1743</epage><pages>1731-1743</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>We have developed an intuitive method to semiautomatically explore volumetric data in a focus-region-guided or value-driven way using a user-defined ray through the 3D volume and contour lines in the region of interest. After selecting a point of interest from a 2D perspective, which defines a ray through the 3D volume, our method provides analytical tools to assist in narrowing the region of interest to a desired set of features. Feature layers are identified in a 1D scalar value profile with the ray and are used to define default rendering parameters, such as color and opacity mappings, and locate the center of the region of interest. Contour lines are generated based on the feature layer level sets within interactively selected slices of the focus region. Finally, we utilize feature-preserving filters and demonstrate the applicability of our scheme to noisy data.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22291153</pmid><doi>10.1109/TVCG.2012.24</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2012-10, Vol.18 (10), p.1731-1743
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_1082219326
source IEEE Electronic Library (IEL)
subjects Algorithms
Biotechnology
Color
Computer Graphics
Computer Simulation
Data visualization
Diagnostic Imaging
Direct volume rendering
Exploration
Feature extraction
focus+context visualization
Histograms
Humans
Image color analysis
Image Processing, Computer-Assisted - methods
Mathematical analysis
Noise measurement
Opacity
Rendering
Rendering (computer graphics)
Scalars
Shape
Studies
Three dimensional
Tornadoes
transfer function
Transfer functions
title Feature-Driven Data Exploration for Volumetric Rendering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature-Driven%20Data%20Exploration%20for%20Volumetric%20Rendering&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Woo,%20Insoo&rft.date=2012-10-01&rft.volume=18&rft.issue=10&rft.spage=1731&rft.epage=1743&rft.pages=1731-1743&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2012.24&rft_dat=%3Cproquest_RIE%3E2737858531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033665007&rft_id=info:pmid/22291153&rft_ieee_id=6143934&rfr_iscdi=true