A time-discrete model for dynamic fracture based on crack regularization

We propose a discrete time model for dynamic fracture based on crack regularization. The advantages of our approach are threefold: first, our regularization of the crack set has been rigorously shown to converge to the correct sharp-interface energy Ambrosio and Tortorelli (Comm. Pure Appl. Math., 4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2011-04, Vol.168 (2), p.133-143
Hauptverfasser: Bourdin, Blaise, Larsen, Christopher J., Richardson, Casey L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 2
container_start_page 133
container_title International journal of fracture
container_volume 168
creator Bourdin, Blaise
Larsen, Christopher J.
Richardson, Casey L.
description We propose a discrete time model for dynamic fracture based on crack regularization. The advantages of our approach are threefold: first, our regularization of the crack set has been rigorously shown to converge to the correct sharp-interface energy Ambrosio and Tortorelli (Comm. Pure Appl. Math., 43(8): 999–1036 ( 1990 ); Boll. Un. Mat. Ital. B (7), 6(1):105–123, 1992 ); second, our condition for crack growth, based on Griffith’s criterion, matches that of quasi-static settings Bourdin (Interfaces Free Bound 9(3): 411–430, 2007 ) where Griffith originally stated his criterion; third, solutions to our model converge, as the time-step tends to zero, to solutions of the correct continuous time model Larsen (Math Models Methods Appl Sci 20:1021–1048, 2010 ). Furthermore, in implementing this model, we naturally recover several features, such as the elastic wave speed as an upper bound on crack speed, and crack branching for sufficiently rapid boundary displacements. We conclude by comparing our approach to so-called “phase-field” ones. In particular, we explain why phase-field approaches are good for approximating free boundaries, but not the free discontinuity sets that model fracture.
doi_str_mv 10.1007/s10704-010-9562-x
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082218626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259829329</sourcerecordid><originalsourceid>FETCH-LOGICAL-p189t-a9f42143820d05b79e7c97eb344e2f660f5f54f5b60bfc42a637fddda8a7a2c23</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoWKs_wF3AjZvoy0smmSxL8QsKbnQdMpOkTJ3O1GQGqr_eKRUE4cKDy-FxOYRcc7jjAPo-c9AgGXBgplDI9idkxgstGCotTskMhFbMSDTn5CLnDQAYXcoZeV7QodkG5ptcpzAEuu19aGnsE_Vfnds2NY3J1cOYAq1cDp72Ha2n5oOmsB5bl5pvNzR9d0nOomtzuPq9c_L--PC2fGar16eX5WLFdrw0A3MmSuRSlAgeikqboGujQyWkDBiVgljEQsaiUlDFWqJTQkfvvSuddlijmJPb499d6j_HkAe7naaHtnVd6MdsOZSIvFSoJvTmH7rpx9RN6yxiYUo0Ysqc4JHKu9R065D-KA72INce5dpJrj3ItXvxA87DbM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259829329</pqid></control><display><type>article</type><title>A time-discrete model for dynamic fracture based on crack regularization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bourdin, Blaise ; Larsen, Christopher J. ; Richardson, Casey L.</creator><creatorcontrib>Bourdin, Blaise ; Larsen, Christopher J. ; Richardson, Casey L.</creatorcontrib><description>We propose a discrete time model for dynamic fracture based on crack regularization. The advantages of our approach are threefold: first, our regularization of the crack set has been rigorously shown to converge to the correct sharp-interface energy Ambrosio and Tortorelli (Comm. Pure Appl. Math., 43(8): 999–1036 ( 1990 ); Boll. Un. Mat. Ital. B (7), 6(1):105–123, 1992 ); second, our condition for crack growth, based on Griffith’s criterion, matches that of quasi-static settings Bourdin (Interfaces Free Bound 9(3): 411–430, 2007 ) where Griffith originally stated his criterion; third, solutions to our model converge, as the time-step tends to zero, to solutions of the correct continuous time model Larsen (Math Models Methods Appl Sci 20:1021–1048, 2010 ). Furthermore, in implementing this model, we naturally recover several features, such as the elastic wave speed as an upper bound on crack speed, and crack branching for sufficiently rapid boundary displacements. We conclude by comparing our approach to so-called “phase-field” ones. In particular, we explain why phase-field approaches are good for approximating free boundaries, but not the free discontinuity sets that model fracture.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-010-9562-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Approximation ; Automotive Engineering ; Boundaries ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Continuous time systems ; Convergence ; Crack propagation ; Criteria ; Discontinuity ; Dynamics ; Elastic waves ; Fracture mechanics ; Free boundaries ; Materials Science ; Mathematical models ; Mechanical Engineering ; Original Paper ; Regularization ; Upper bounds</subject><ispartof>International journal of fracture, 2011-04, Vol.168 (2), p.133-143</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>International Journal of Fracture is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-010-9562-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-010-9562-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bourdin, Blaise</creatorcontrib><creatorcontrib>Larsen, Christopher J.</creatorcontrib><creatorcontrib>Richardson, Casey L.</creatorcontrib><title>A time-discrete model for dynamic fracture based on crack regularization</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>We propose a discrete time model for dynamic fracture based on crack regularization. The advantages of our approach are threefold: first, our regularization of the crack set has been rigorously shown to converge to the correct sharp-interface energy Ambrosio and Tortorelli (Comm. Pure Appl. Math., 43(8): 999–1036 ( 1990 ); Boll. Un. Mat. Ital. B (7), 6(1):105–123, 1992 ); second, our condition for crack growth, based on Griffith’s criterion, matches that of quasi-static settings Bourdin (Interfaces Free Bound 9(3): 411–430, 2007 ) where Griffith originally stated his criterion; third, solutions to our model converge, as the time-step tends to zero, to solutions of the correct continuous time model Larsen (Math Models Methods Appl Sci 20:1021–1048, 2010 ). Furthermore, in implementing this model, we naturally recover several features, such as the elastic wave speed as an upper bound on crack speed, and crack branching for sufficiently rapid boundary displacements. We conclude by comparing our approach to so-called “phase-field” ones. In particular, we explain why phase-field approaches are good for approximating free boundaries, but not the free discontinuity sets that model fracture.</description><subject>Approximation</subject><subject>Automotive Engineering</subject><subject>Boundaries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Continuous time systems</subject><subject>Convergence</subject><subject>Crack propagation</subject><subject>Criteria</subject><subject>Discontinuity</subject><subject>Dynamics</subject><subject>Elastic waves</subject><subject>Fracture mechanics</subject><subject>Free boundaries</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Regularization</subject><subject>Upper bounds</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkE1LAzEURYMoWKs_wF3AjZvoy0smmSxL8QsKbnQdMpOkTJ3O1GQGqr_eKRUE4cKDy-FxOYRcc7jjAPo-c9AgGXBgplDI9idkxgstGCotTskMhFbMSDTn5CLnDQAYXcoZeV7QodkG5ptcpzAEuu19aGnsE_Vfnds2NY3J1cOYAq1cDp72Ha2n5oOmsB5bl5pvNzR9d0nOomtzuPq9c_L--PC2fGar16eX5WLFdrw0A3MmSuRSlAgeikqboGujQyWkDBiVgljEQsaiUlDFWqJTQkfvvSuddlijmJPb499d6j_HkAe7naaHtnVd6MdsOZSIvFSoJvTmH7rpx9RN6yxiYUo0Ysqc4JHKu9R065D-KA72INce5dpJrj3ItXvxA87DbM0</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Bourdin, Blaise</creator><creator>Larsen, Christopher J.</creator><creator>Richardson, Casey L.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20110401</creationdate><title>A time-discrete model for dynamic fracture based on crack regularization</title><author>Bourdin, Blaise ; Larsen, Christopher J. ; Richardson, Casey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p189t-a9f42143820d05b79e7c97eb344e2f660f5f54f5b60bfc42a637fddda8a7a2c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Automotive Engineering</topic><topic>Boundaries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Continuous time systems</topic><topic>Convergence</topic><topic>Crack propagation</topic><topic>Criteria</topic><topic>Discontinuity</topic><topic>Dynamics</topic><topic>Elastic waves</topic><topic>Fracture mechanics</topic><topic>Free boundaries</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Regularization</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourdin, Blaise</creatorcontrib><creatorcontrib>Larsen, Christopher J.</creatorcontrib><creatorcontrib>Richardson, Casey L.</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourdin, Blaise</au><au>Larsen, Christopher J.</au><au>Richardson, Casey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time-discrete model for dynamic fracture based on crack regularization</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>168</volume><issue>2</issue><spage>133</spage><epage>143</epage><pages>133-143</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>We propose a discrete time model for dynamic fracture based on crack regularization. The advantages of our approach are threefold: first, our regularization of the crack set has been rigorously shown to converge to the correct sharp-interface energy Ambrosio and Tortorelli (Comm. Pure Appl. Math., 43(8): 999–1036 ( 1990 ); Boll. Un. Mat. Ital. B (7), 6(1):105–123, 1992 ); second, our condition for crack growth, based on Griffith’s criterion, matches that of quasi-static settings Bourdin (Interfaces Free Bound 9(3): 411–430, 2007 ) where Griffith originally stated his criterion; third, solutions to our model converge, as the time-step tends to zero, to solutions of the correct continuous time model Larsen (Math Models Methods Appl Sci 20:1021–1048, 2010 ). Furthermore, in implementing this model, we naturally recover several features, such as the elastic wave speed as an upper bound on crack speed, and crack branching for sufficiently rapid boundary displacements. We conclude by comparing our approach to so-called “phase-field” ones. In particular, we explain why phase-field approaches are good for approximating free boundaries, but not the free discontinuity sets that model fracture.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-010-9562-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2011-04, Vol.168 (2), p.133-143
issn 0376-9429
1573-2673
language eng
recordid cdi_proquest_miscellaneous_1082218626
source SpringerLink Journals - AutoHoldings
subjects Approximation
Automotive Engineering
Boundaries
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Continuous time systems
Convergence
Crack propagation
Criteria
Discontinuity
Dynamics
Elastic waves
Fracture mechanics
Free boundaries
Materials Science
Mathematical models
Mechanical Engineering
Original Paper
Regularization
Upper bounds
title A time-discrete model for dynamic fracture based on crack regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time-discrete%20model%20for%20dynamic%20fracture%20based%20on%20crack%20regularization&rft.jtitle=International%20journal%20of%20fracture&rft.au=Bourdin,%20Blaise&rft.date=2011-04-01&rft.volume=168&rft.issue=2&rft.spage=133&rft.epage=143&rft.pages=133-143&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-010-9562-x&rft_dat=%3Cproquest_sprin%3E2259829329%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259829329&rft_id=info:pmid/&rfr_iscdi=true