A time-discrete model for dynamic fracture based on crack regularization
We propose a discrete time model for dynamic fracture based on crack regularization. The advantages of our approach are threefold: first, our regularization of the crack set has been rigorously shown to converge to the correct sharp-interface energy Ambrosio and Tortorelli (Comm. Pure Appl. Math., 4...
Gespeichert in:
Veröffentlicht in: | International journal of fracture 2011-04, Vol.168 (2), p.133-143 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 2 |
container_start_page | 133 |
container_title | International journal of fracture |
container_volume | 168 |
creator | Bourdin, Blaise Larsen, Christopher J. Richardson, Casey L. |
description | We propose a discrete time model for dynamic fracture based on crack regularization. The advantages of our approach are threefold: first, our regularization of the crack set has been rigorously shown to converge to the correct sharp-interface energy Ambrosio and Tortorelli (Comm. Pure Appl. Math., 43(8): 999–1036 (
1990
); Boll. Un. Mat. Ital. B (7), 6(1):105–123,
1992
); second, our condition for crack growth, based on Griffith’s criterion, matches that of quasi-static settings Bourdin (Interfaces Free Bound 9(3): 411–430,
2007
) where Griffith originally stated his criterion; third, solutions to our model converge, as the time-step tends to zero, to solutions of the correct continuous time model Larsen (Math Models Methods Appl Sci 20:1021–1048,
2010
). Furthermore, in implementing this model, we naturally recover several features, such as the elastic wave speed as an upper bound on crack speed, and crack branching for sufficiently rapid boundary displacements. We conclude by comparing our approach to so-called “phase-field” ones. In particular, we explain why phase-field approaches are good for approximating free boundaries, but not the free discontinuity sets that model fracture. |
doi_str_mv | 10.1007/s10704-010-9562-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082218626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259829329</sourcerecordid><originalsourceid>FETCH-LOGICAL-p189t-a9f42143820d05b79e7c97eb344e2f660f5f54f5b60bfc42a637fddda8a7a2c23</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoWKs_wF3AjZvoy0smmSxL8QsKbnQdMpOkTJ3O1GQGqr_eKRUE4cKDy-FxOYRcc7jjAPo-c9AgGXBgplDI9idkxgstGCotTskMhFbMSDTn5CLnDQAYXcoZeV7QodkG5ptcpzAEuu19aGnsE_Vfnds2NY3J1cOYAq1cDp72Ha2n5oOmsB5bl5pvNzR9d0nOomtzuPq9c_L--PC2fGar16eX5WLFdrw0A3MmSuRSlAgeikqboGujQyWkDBiVgljEQsaiUlDFWqJTQkfvvSuddlijmJPb499d6j_HkAe7naaHtnVd6MdsOZSIvFSoJvTmH7rpx9RN6yxiYUo0Ysqc4JHKu9R065D-KA72INce5dpJrj3ItXvxA87DbM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259829329</pqid></control><display><type>article</type><title>A time-discrete model for dynamic fracture based on crack regularization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bourdin, Blaise ; Larsen, Christopher J. ; Richardson, Casey L.</creator><creatorcontrib>Bourdin, Blaise ; Larsen, Christopher J. ; Richardson, Casey L.</creatorcontrib><description>We propose a discrete time model for dynamic fracture based on crack regularization. The advantages of our approach are threefold: first, our regularization of the crack set has been rigorously shown to converge to the correct sharp-interface energy Ambrosio and Tortorelli (Comm. Pure Appl. Math., 43(8): 999–1036 (
1990
); Boll. Un. Mat. Ital. B (7), 6(1):105–123,
1992
); second, our condition for crack growth, based on Griffith’s criterion, matches that of quasi-static settings Bourdin (Interfaces Free Bound 9(3): 411–430,
2007
) where Griffith originally stated his criterion; third, solutions to our model converge, as the time-step tends to zero, to solutions of the correct continuous time model Larsen (Math Models Methods Appl Sci 20:1021–1048,
2010
). Furthermore, in implementing this model, we naturally recover several features, such as the elastic wave speed as an upper bound on crack speed, and crack branching for sufficiently rapid boundary displacements. We conclude by comparing our approach to so-called “phase-field” ones. In particular, we explain why phase-field approaches are good for approximating free boundaries, but not the free discontinuity sets that model fracture.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-010-9562-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Approximation ; Automotive Engineering ; Boundaries ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Continuous time systems ; Convergence ; Crack propagation ; Criteria ; Discontinuity ; Dynamics ; Elastic waves ; Fracture mechanics ; Free boundaries ; Materials Science ; Mathematical models ; Mechanical Engineering ; Original Paper ; Regularization ; Upper bounds</subject><ispartof>International journal of fracture, 2011-04, Vol.168 (2), p.133-143</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>International Journal of Fracture is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-010-9562-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-010-9562-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bourdin, Blaise</creatorcontrib><creatorcontrib>Larsen, Christopher J.</creatorcontrib><creatorcontrib>Richardson, Casey L.</creatorcontrib><title>A time-discrete model for dynamic fracture based on crack regularization</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>We propose a discrete time model for dynamic fracture based on crack regularization. The advantages of our approach are threefold: first, our regularization of the crack set has been rigorously shown to converge to the correct sharp-interface energy Ambrosio and Tortorelli (Comm. Pure Appl. Math., 43(8): 999–1036 (
1990
); Boll. Un. Mat. Ital. B (7), 6(1):105–123,
1992
); second, our condition for crack growth, based on Griffith’s criterion, matches that of quasi-static settings Bourdin (Interfaces Free Bound 9(3): 411–430,
2007
) where Griffith originally stated his criterion; third, solutions to our model converge, as the time-step tends to zero, to solutions of the correct continuous time model Larsen (Math Models Methods Appl Sci 20:1021–1048,
2010
). Furthermore, in implementing this model, we naturally recover several features, such as the elastic wave speed as an upper bound on crack speed, and crack branching for sufficiently rapid boundary displacements. We conclude by comparing our approach to so-called “phase-field” ones. In particular, we explain why phase-field approaches are good for approximating free boundaries, but not the free discontinuity sets that model fracture.</description><subject>Approximation</subject><subject>Automotive Engineering</subject><subject>Boundaries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Continuous time systems</subject><subject>Convergence</subject><subject>Crack propagation</subject><subject>Criteria</subject><subject>Discontinuity</subject><subject>Dynamics</subject><subject>Elastic waves</subject><subject>Fracture mechanics</subject><subject>Free boundaries</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Regularization</subject><subject>Upper bounds</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkE1LAzEURYMoWKs_wF3AjZvoy0smmSxL8QsKbnQdMpOkTJ3O1GQGqr_eKRUE4cKDy-FxOYRcc7jjAPo-c9AgGXBgplDI9idkxgstGCotTskMhFbMSDTn5CLnDQAYXcoZeV7QodkG5ptcpzAEuu19aGnsE_Vfnds2NY3J1cOYAq1cDp72Ha2n5oOmsB5bl5pvNzR9d0nOomtzuPq9c_L--PC2fGar16eX5WLFdrw0A3MmSuRSlAgeikqboGujQyWkDBiVgljEQsaiUlDFWqJTQkfvvSuddlijmJPb499d6j_HkAe7naaHtnVd6MdsOZSIvFSoJvTmH7rpx9RN6yxiYUo0Ysqc4JHKu9R065D-KA72INce5dpJrj3ItXvxA87DbM0</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Bourdin, Blaise</creator><creator>Larsen, Christopher J.</creator><creator>Richardson, Casey L.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20110401</creationdate><title>A time-discrete model for dynamic fracture based on crack regularization</title><author>Bourdin, Blaise ; Larsen, Christopher J. ; Richardson, Casey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p189t-a9f42143820d05b79e7c97eb344e2f660f5f54f5b60bfc42a637fddda8a7a2c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Automotive Engineering</topic><topic>Boundaries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Continuous time systems</topic><topic>Convergence</topic><topic>Crack propagation</topic><topic>Criteria</topic><topic>Discontinuity</topic><topic>Dynamics</topic><topic>Elastic waves</topic><topic>Fracture mechanics</topic><topic>Free boundaries</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Regularization</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourdin, Blaise</creatorcontrib><creatorcontrib>Larsen, Christopher J.</creatorcontrib><creatorcontrib>Richardson, Casey L.</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourdin, Blaise</au><au>Larsen, Christopher J.</au><au>Richardson, Casey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time-discrete model for dynamic fracture based on crack regularization</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>168</volume><issue>2</issue><spage>133</spage><epage>143</epage><pages>133-143</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>We propose a discrete time model for dynamic fracture based on crack regularization. The advantages of our approach are threefold: first, our regularization of the crack set has been rigorously shown to converge to the correct sharp-interface energy Ambrosio and Tortorelli (Comm. Pure Appl. Math., 43(8): 999–1036 (
1990
); Boll. Un. Mat. Ital. B (7), 6(1):105–123,
1992
); second, our condition for crack growth, based on Griffith’s criterion, matches that of quasi-static settings Bourdin (Interfaces Free Bound 9(3): 411–430,
2007
) where Griffith originally stated his criterion; third, solutions to our model converge, as the time-step tends to zero, to solutions of the correct continuous time model Larsen (Math Models Methods Appl Sci 20:1021–1048,
2010
). Furthermore, in implementing this model, we naturally recover several features, such as the elastic wave speed as an upper bound on crack speed, and crack branching for sufficiently rapid boundary displacements. We conclude by comparing our approach to so-called “phase-field” ones. In particular, we explain why phase-field approaches are good for approximating free boundaries, but not the free discontinuity sets that model fracture.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-010-9562-x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-9429 |
ispartof | International journal of fracture, 2011-04, Vol.168 (2), p.133-143 |
issn | 0376-9429 1573-2673 |
language | eng |
recordid | cdi_proquest_miscellaneous_1082218626 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Automotive Engineering Boundaries Characterization and Evaluation of Materials Chemistry and Materials Science Civil Engineering Classical Mechanics Continuous time systems Convergence Crack propagation Criteria Discontinuity Dynamics Elastic waves Fracture mechanics Free boundaries Materials Science Mathematical models Mechanical Engineering Original Paper Regularization Upper bounds |
title | A time-discrete model for dynamic fracture based on crack regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time-discrete%20model%20for%20dynamic%20fracture%20based%20on%20crack%20regularization&rft.jtitle=International%20journal%20of%20fracture&rft.au=Bourdin,%20Blaise&rft.date=2011-04-01&rft.volume=168&rft.issue=2&rft.spage=133&rft.epage=143&rft.pages=133-143&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-010-9562-x&rft_dat=%3Cproquest_sprin%3E2259829329%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259829329&rft_id=info:pmid/&rfr_iscdi=true |