Comparing non-stationary and irregularly spaced time series

In this paper, we present approximate distributions for the ratio of the cumulative wavelet periodograms considering stationary and non-stationary time series generated from independent Gaussian processes. We also adapt an existing procedure to use this statistic and its approximate distribution in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2012-12, Vol.56 (12), p.3921-3934
Hauptverfasser: Salcedo, Gladys E., Porto, Rogério F., Morettin, Pedro A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3934
container_issue 12
container_start_page 3921
container_title Computational statistics & data analysis
container_volume 56
creator Salcedo, Gladys E.
Porto, Rogério F.
Morettin, Pedro A.
description In this paper, we present approximate distributions for the ratio of the cumulative wavelet periodograms considering stationary and non-stationary time series generated from independent Gaussian processes. We also adapt an existing procedure to use this statistic and its approximate distribution in order to test if two regularly or irregularly spaced time series are realizations of the same generating process. Simulation studies show good size and power properties for the test statistic. An application with financial microdata illustrates the test usefulness. We conclude advocating the use of these approximate distributions instead of the ones obtained through randomizations, mainly in the case of irregular time series.
doi_str_mv 10.1016/j.csda.2012.05.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082217052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947312002216</els_id><sourcerecordid>1082217052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d17667206f7631f639a85c0a2d942ad32a5535deacad9101e557f05525dbfb0b3</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EEqXwB5gysiTY13WcCBYU8ZIqscBs3do3lau8sFOk_ntclZnpLue70jmM3QpeCC7K-11ho8MCuICCq4IDnLGFqDTkWio4Z4sE6bxeaXnJrmLccc5hpasFe2jGfsLgh202jEMeZ5z9OGA4ZDi4zIdA232HoTtkcUJLLpt9T1mk4Cles4sWu0g3f3fJvl6eP5u3fP3x-t48rXMrpZxzJ3RZauBlq0sp2lLWWCnLEVy9AnQSUCmpHKFFVycbUkq3XClQbtNu-EYu2d3p7xTG7z3F2fQ-Wuo6HGjcRyN4BSA0V5BQOKE2jDEGas0UfJ90EmSOpczOHEuZYynDlUml0ujxNKIk8eMpmGg9DcnWB7KzcaP_b_4LR75xSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082217052</pqid></control><display><type>article</type><title>Comparing non-stationary and irregularly spaced time series</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Salcedo, Gladys E. ; Porto, Rogério F. ; Morettin, Pedro A.</creator><creatorcontrib>Salcedo, Gladys E. ; Porto, Rogério F. ; Morettin, Pedro A.</creatorcontrib><description>In this paper, we present approximate distributions for the ratio of the cumulative wavelet periodograms considering stationary and non-stationary time series generated from independent Gaussian processes. We also adapt an existing procedure to use this statistic and its approximate distribution in order to test if two regularly or irregularly spaced time series are realizations of the same generating process. Simulation studies show good size and power properties for the test statistic. An application with financial microdata illustrates the test usefulness. We conclude advocating the use of these approximate distributions instead of the ones obtained through randomizations, mainly in the case of irregular time series.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2012.05.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Computer simulation ; Data processing ; Distributions of quadratic forms ; Gaussian ; Hypothesis testing ; Irregularly spaced time series ; Locally stationary wavelet processes ; Multiresolution approximation ; Randomization ; Statistics ; Time series ; Wavelet</subject><ispartof>Computational statistics &amp; data analysis, 2012-12, Vol.56 (12), p.3921-3934</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d17667206f7631f639a85c0a2d942ad32a5535deacad9101e557f05525dbfb0b3</citedby><cites>FETCH-LOGICAL-c333t-d17667206f7631f639a85c0a2d942ad32a5535deacad9101e557f05525dbfb0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csda.2012.05.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Salcedo, Gladys E.</creatorcontrib><creatorcontrib>Porto, Rogério F.</creatorcontrib><creatorcontrib>Morettin, Pedro A.</creatorcontrib><title>Comparing non-stationary and irregularly spaced time series</title><title>Computational statistics &amp; data analysis</title><description>In this paper, we present approximate distributions for the ratio of the cumulative wavelet periodograms considering stationary and non-stationary time series generated from independent Gaussian processes. We also adapt an existing procedure to use this statistic and its approximate distribution in order to test if two regularly or irregularly spaced time series are realizations of the same generating process. Simulation studies show good size and power properties for the test statistic. An application with financial microdata illustrates the test usefulness. We conclude advocating the use of these approximate distributions instead of the ones obtained through randomizations, mainly in the case of irregular time series.</description><subject>Approximation</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Distributions of quadratic forms</subject><subject>Gaussian</subject><subject>Hypothesis testing</subject><subject>Irregularly spaced time series</subject><subject>Locally stationary wavelet processes</subject><subject>Multiresolution approximation</subject><subject>Randomization</subject><subject>Statistics</subject><subject>Time series</subject><subject>Wavelet</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAURi0EEqXwB5gysiTY13WcCBYU8ZIqscBs3do3lau8sFOk_ntclZnpLue70jmM3QpeCC7K-11ho8MCuICCq4IDnLGFqDTkWio4Z4sE6bxeaXnJrmLccc5hpasFe2jGfsLgh202jEMeZ5z9OGA4ZDi4zIdA232HoTtkcUJLLpt9T1mk4Cles4sWu0g3f3fJvl6eP5u3fP3x-t48rXMrpZxzJ3RZauBlq0sp2lLWWCnLEVy9AnQSUCmpHKFFVycbUkq3XClQbtNu-EYu2d3p7xTG7z3F2fQ-Wuo6HGjcRyN4BSA0V5BQOKE2jDEGas0UfJ90EmSOpczOHEuZYynDlUml0ujxNKIk8eMpmGg9DcnWB7KzcaP_b_4LR75xSg</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Salcedo, Gladys E.</creator><creator>Porto, Rogério F.</creator><creator>Morettin, Pedro A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201212</creationdate><title>Comparing non-stationary and irregularly spaced time series</title><author>Salcedo, Gladys E. ; Porto, Rogério F. ; Morettin, Pedro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d17667206f7631f639a85c0a2d942ad32a5535deacad9101e557f05525dbfb0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Distributions of quadratic forms</topic><topic>Gaussian</topic><topic>Hypothesis testing</topic><topic>Irregularly spaced time series</topic><topic>Locally stationary wavelet processes</topic><topic>Multiresolution approximation</topic><topic>Randomization</topic><topic>Statistics</topic><topic>Time series</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salcedo, Gladys E.</creatorcontrib><creatorcontrib>Porto, Rogério F.</creatorcontrib><creatorcontrib>Morettin, Pedro A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salcedo, Gladys E.</au><au>Porto, Rogério F.</au><au>Morettin, Pedro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing non-stationary and irregularly spaced time series</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2012-12</date><risdate>2012</risdate><volume>56</volume><issue>12</issue><spage>3921</spage><epage>3934</epage><pages>3921-3934</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>In this paper, we present approximate distributions for the ratio of the cumulative wavelet periodograms considering stationary and non-stationary time series generated from independent Gaussian processes. We also adapt an existing procedure to use this statistic and its approximate distribution in order to test if two regularly or irregularly spaced time series are realizations of the same generating process. Simulation studies show good size and power properties for the test statistic. An application with financial microdata illustrates the test usefulness. We conclude advocating the use of these approximate distributions instead of the ones obtained through randomizations, mainly in the case of irregular time series.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2012.05.022</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2012-12, Vol.56 (12), p.3921-3934
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_1082217052
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Approximation
Computer simulation
Data processing
Distributions of quadratic forms
Gaussian
Hypothesis testing
Irregularly spaced time series
Locally stationary wavelet processes
Multiresolution approximation
Randomization
Statistics
Time series
Wavelet
title Comparing non-stationary and irregularly spaced time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20non-stationary%20and%20irregularly%20spaced%20time%20series&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Salcedo,%20Gladys%20E.&rft.date=2012-12&rft.volume=56&rft.issue=12&rft.spage=3921&rft.epage=3934&rft.pages=3921-3934&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2012.05.022&rft_dat=%3Cproquest_cross%3E1082217052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082217052&rft_id=info:pmid/&rft_els_id=S0167947312002216&rfr_iscdi=true