Dried jujube classification using support vector machine based on fractal parameters and red, green and blue intensity

Summary A new method that combines fractal theory and red, green and blue (RGB) colour intensity was developed to sort dried jujube fruits by using support vector machine (SVM). Our result shows that the new method is fast and accurate in dried jujube fruits classification. The SVM models based on f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of food science & technology 2012-09, Vol.47 (9), p.1951-1957
Hauptverfasser: Lou, Heqiang, Hu, Ya, Wang, Bin, Lu, Hongfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1957
container_issue 9
container_start_page 1951
container_title International journal of food science & technology
container_volume 47
creator Lou, Heqiang
Hu, Ya
Wang, Bin
Lu, Hongfei
description Summary A new method that combines fractal theory and red, green and blue (RGB) colour intensity was developed to sort dried jujube fruits by using support vector machine (SVM). Our result shows that the new method is fast and accurate in dried jujube fruits classification. The SVM models based on fractal parameters only achieved 85.18–92.73% total accuracy rate. The total classification accuracy of SVM based on RGB intensity values was 94.44%. However, the SVM models based on combining fractal parameters with RGB intensity values achieved 94.44–98.15% total accuracy rate. The best classification accuracy (98.15%) was found when using SVM model based on combining fractal measures (FM) with RGB intensity values (C = 512, γ = 0.0078125). Therefore, the SVM model based on combining FMs with RGB intensity is recommended in dried jujube fruits classification.
doi_str_mv 10.1111/j.1365-2621.2012.03055.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082216536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082216536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5095-66666b49d7199612d69531e11cf8f5f06c37a3384bbff8067a927c3720fab41f3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEEkPhP1hCSCxI6mvHTrJBQoWWogISz6XlONfFIeMEOykz_75Op5oFK-7Gr-8cX52bZQRoAalO-wK4FDmTDApGgRWUUyGK3YNsc3x4mG1oI2guSsYfZ09i7CmljFflJrt5Gxx2pF_6pUViBh2js87o2Y2eLNH5axKXaRrDTG7QzGMgW21-OY-k1TEJE2WDNrMeyKSD3uKMIRLtOxKwe0WuA6K_O7bDgsT5GX108_5p9sjqIeKz-_Uk-37-7tvZ-_zq88Xl2Zur3IjUcS7Xasumq6BpJLBONoIDAhhbW2GpNLzSnNdl21pbU1nphlXpjlGr2xIsP8leHnynMP5ZMM5q66LBYdAexyUqoDVjIAWXCX3-D9qPS_CpOwUlh6YCAStVHygTxhgDWjUFt9Vhn6zUOhDVqzV3teau1oGou4GoXZK-uP9AR6OHFJs3Lh71SSBE3TSJe33g_roB9__try4_nH9dt8kgPxi4OOPuaKDDbyUrXgn189OFkhLkR_jxRTF-CwgarS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431971516</pqid></control><display><type>article</type><title>Dried jujube classification using support vector machine based on fractal parameters and red, green and blue intensity</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library All Journals</source><creator>Lou, Heqiang ; Hu, Ya ; Wang, Bin ; Lu, Hongfei</creator><creatorcontrib>Lou, Heqiang ; Hu, Ya ; Wang, Bin ; Lu, Hongfei</creatorcontrib><description>Summary A new method that combines fractal theory and red, green and blue (RGB) colour intensity was developed to sort dried jujube fruits by using support vector machine (SVM). Our result shows that the new method is fast and accurate in dried jujube fruits classification. The SVM models based on fractal parameters only achieved 85.18–92.73% total accuracy rate. The total classification accuracy of SVM based on RGB intensity values was 94.44%. However, the SVM models based on combining fractal parameters with RGB intensity values achieved 94.44–98.15% total accuracy rate. The best classification accuracy (98.15%) was found when using SVM model based on combining fractal measures (FM) with RGB intensity values (C = 512, γ = 0.0078125). Therefore, the SVM model based on combining FMs with RGB intensity is recommended in dried jujube fruits classification.</description><identifier>ISSN: 0950-5423</identifier><identifier>EISSN: 1365-2621</identifier><identifier>DOI: 10.1111/j.1365-2621.2012.03055.x</identifier><identifier>CODEN: IJFTEZ</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Biological and medical sciences ; Classification ; dried jujube fruits ; Flexible manufacturing systems ; Food industries ; Food science ; Fractal analysis ; fractal dimensions ; fractal measures ; Fractals ; Fruits ; Fundamental and applied biological sciences. Psychology ; green and blue ; Mathematical models ; red ; support vector machine ; Support vector machines</subject><ispartof>International journal of food science &amp; technology, 2012-09, Vol.47 (9), p.1951-1957</ispartof><rights>2012 The Authors. International Journal of Food Science and Technology © 2012 Institute of Food Science and Technology</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5095-66666b49d7199612d69531e11cf8f5f06c37a3384bbff8067a927c3720fab41f3</citedby><cites>FETCH-LOGICAL-c5095-66666b49d7199612d69531e11cf8f5f06c37a3384bbff8067a927c3720fab41f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2621.2012.03055.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2621.2012.03055.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26255899$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lou, Heqiang</creatorcontrib><creatorcontrib>Hu, Ya</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Lu, Hongfei</creatorcontrib><title>Dried jujube classification using support vector machine based on fractal parameters and red, green and blue intensity</title><title>International journal of food science &amp; technology</title><description>Summary A new method that combines fractal theory and red, green and blue (RGB) colour intensity was developed to sort dried jujube fruits by using support vector machine (SVM). Our result shows that the new method is fast and accurate in dried jujube fruits classification. The SVM models based on fractal parameters only achieved 85.18–92.73% total accuracy rate. The total classification accuracy of SVM based on RGB intensity values was 94.44%. However, the SVM models based on combining fractal parameters with RGB intensity values achieved 94.44–98.15% total accuracy rate. The best classification accuracy (98.15%) was found when using SVM model based on combining fractal measures (FM) with RGB intensity values (C = 512, γ = 0.0078125). Therefore, the SVM model based on combining FMs with RGB intensity is recommended in dried jujube fruits classification.</description><subject>Accuracy</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>dried jujube fruits</subject><subject>Flexible manufacturing systems</subject><subject>Food industries</subject><subject>Food science</subject><subject>Fractal analysis</subject><subject>fractal dimensions</subject><subject>fractal measures</subject><subject>Fractals</subject><subject>Fruits</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>green and blue</subject><subject>Mathematical models</subject><subject>red</subject><subject>support vector machine</subject><subject>Support vector machines</subject><issn>0950-5423</issn><issn>1365-2621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAUhSMEEkPhP1hCSCxI6mvHTrJBQoWWogISz6XlONfFIeMEOykz_75Op5oFK-7Gr-8cX52bZQRoAalO-wK4FDmTDApGgRWUUyGK3YNsc3x4mG1oI2guSsYfZ09i7CmljFflJrt5Gxx2pF_6pUViBh2js87o2Y2eLNH5axKXaRrDTG7QzGMgW21-OY-k1TEJE2WDNrMeyKSD3uKMIRLtOxKwe0WuA6K_O7bDgsT5GX108_5p9sjqIeKz-_Uk-37-7tvZ-_zq88Xl2Zur3IjUcS7Xasumq6BpJLBONoIDAhhbW2GpNLzSnNdl21pbU1nphlXpjlGr2xIsP8leHnynMP5ZMM5q66LBYdAexyUqoDVjIAWXCX3-D9qPS_CpOwUlh6YCAStVHygTxhgDWjUFt9Vhn6zUOhDVqzV3teau1oGou4GoXZK-uP9AR6OHFJs3Lh71SSBE3TSJe33g_roB9__try4_nH9dt8kgPxi4OOPuaKDDbyUrXgn189OFkhLkR_jxRTF-CwgarS0</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Lou, Heqiang</creator><creator>Hu, Ya</creator><creator>Wang, Bin</creator><creator>Lu, Hongfei</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>201209</creationdate><title>Dried jujube classification using support vector machine based on fractal parameters and red, green and blue intensity</title><author>Lou, Heqiang ; Hu, Ya ; Wang, Bin ; Lu, Hongfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5095-66666b49d7199612d69531e11cf8f5f06c37a3384bbff8067a927c3720fab41f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>dried jujube fruits</topic><topic>Flexible manufacturing systems</topic><topic>Food industries</topic><topic>Food science</topic><topic>Fractal analysis</topic><topic>fractal dimensions</topic><topic>fractal measures</topic><topic>Fractals</topic><topic>Fruits</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>green and blue</topic><topic>Mathematical models</topic><topic>red</topic><topic>support vector machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Heqiang</creatorcontrib><creatorcontrib>Hu, Ya</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Lu, Hongfei</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>International journal of food science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Heqiang</au><au>Hu, Ya</au><au>Wang, Bin</au><au>Lu, Hongfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dried jujube classification using support vector machine based on fractal parameters and red, green and blue intensity</atitle><jtitle>International journal of food science &amp; technology</jtitle><date>2012-09</date><risdate>2012</risdate><volume>47</volume><issue>9</issue><spage>1951</spage><epage>1957</epage><pages>1951-1957</pages><issn>0950-5423</issn><eissn>1365-2621</eissn><coden>IJFTEZ</coden><abstract>Summary A new method that combines fractal theory and red, green and blue (RGB) colour intensity was developed to sort dried jujube fruits by using support vector machine (SVM). Our result shows that the new method is fast and accurate in dried jujube fruits classification. The SVM models based on fractal parameters only achieved 85.18–92.73% total accuracy rate. The total classification accuracy of SVM based on RGB intensity values was 94.44%. However, the SVM models based on combining fractal parameters with RGB intensity values achieved 94.44–98.15% total accuracy rate. The best classification accuracy (98.15%) was found when using SVM model based on combining fractal measures (FM) with RGB intensity values (C = 512, γ = 0.0078125). Therefore, the SVM model based on combining FMs with RGB intensity is recommended in dried jujube fruits classification.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2621.2012.03055.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-5423
ispartof International journal of food science & technology, 2012-09, Vol.47 (9), p.1951-1957
issn 0950-5423
1365-2621
language eng
recordid cdi_proquest_miscellaneous_1082216536
source Oxford Journals Open Access Collection; Wiley Online Library All Journals
subjects Accuracy
Biological and medical sciences
Classification
dried jujube fruits
Flexible manufacturing systems
Food industries
Food science
Fractal analysis
fractal dimensions
fractal measures
Fractals
Fruits
Fundamental and applied biological sciences. Psychology
green and blue
Mathematical models
red
support vector machine
Support vector machines
title Dried jujube classification using support vector machine based on fractal parameters and red, green and blue intensity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dried%20jujube%20classification%20using%20support%20vector%20machine%20based%20on%20fractal%20parameters%20and%20red,%20green%20and%20blue%20intensity&rft.jtitle=International%20journal%20of%20food%20science%20&%20technology&rft.au=Lou,%20Heqiang&rft.date=2012-09&rft.volume=47&rft.issue=9&rft.spage=1951&rft.epage=1957&rft.pages=1951-1957&rft.issn=0950-5423&rft.eissn=1365-2621&rft.coden=IJFTEZ&rft_id=info:doi/10.1111/j.1365-2621.2012.03055.x&rft_dat=%3Cproquest_cross%3E1082216536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431971516&rft_id=info:pmid/&rfr_iscdi=true