Rod groups and their settings as special geometric realisations of line groups
Rod groups (monoperiodic subgroups of the 3‐periodic space groups) are considered as a special case of the commensurate line groups (discrete symmetry groups of the three‐dimensional objects translationally periodic along a line). Two different factorizations of line groups are considered: (1) The s...
Gespeichert in:
Veröffentlicht in: | Acta crystallographica. Section A, Foundations of crystallography Foundations of crystallography, 2012-09, Vol.68 (5), p.582-588 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 588 |
---|---|
container_issue | 5 |
container_start_page | 582 |
container_title | Acta crystallographica. Section A, Foundations of crystallography |
container_volume | 68 |
creator | Evarestov, R. A. Panin, A. I. |
description | Rod groups (monoperiodic subgroups of the 3‐periodic space groups) are considered as a special case of the commensurate line groups (discrete symmetry groups of the three‐dimensional objects translationally periodic along a line). Two different factorizations of line groups are considered: (1) The standard L = T(a)F used in crystallography for rod groups; F is a finite system of representatives of line‐group decomposition in cosets of 1‐periodic translation group T(a); (2) L = ZP used in the theory of line groups; Z is a cyclic generalized translation group and P is a finite point group. For symmorphic line groups (five line‐group families of 13 families) the two factorizations are equivalent: the cyclic group Z is a monoperiodic translation group and P is the point group defining the crystal class. For each of the remaining eight families of non‐symmorphic line groups the explicit correspondence between rod groups and relevant geometric realisations of the corresponding line groups is established. The settings of rod groups and line groups are taken into account. The results are presented in a table of 75 rod groups listed (in international and factorized notation) by families of the line groups according to the order of the principal axis q (q = 1, 2, 3, 4, 6) of the corresponding isogonal point group. |
doi_str_mv | 10.1107/S0108767312026670 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082216231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1033682514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4497-c11eea2162fdfc2f8d26669f425d10880a1b8cd247ab43e2a1d2e1e595965b6c3</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi1ERUPhB3BBlrhw2dbjz91j1EKpFIogIAQXy_HOBpfNOti7gv57HBJ6gAOcLHme59WMXkKeADsFYOZsyYDVRhsBnHGtDbtHZqAZq5Th8j6Z7cbVbn5MHuZ8wxgDAewBOea8bgSXMCPX72JL1ylO20zd0NLxC4ZEM45jGNblK9O8RR9cT9cYNzim4GlC14fsxhCHTGNH-zDgIeMROepcn_Hx4T0hH16-eH_-qlq8ubw6ny8qL2VjKg-A6Dho3rWd513dlvV100mu2rJzzRysat9yadxKCuQOWo6AqlGNVivtxQl5vs_dpvhtwjzaTcge-94NGKdsSwjfxQv4D1QIXXMFsqDP_kBv4pSGcsgvSkolRV0o2FM-xZwTdnabwsal2wLZXS_2r16K8_SQPK022N4Zv4soQL0Hvoceb_-daOef5hevFeOmqNVeDXnEH3eqS19tEYyyH68v7YIvl28_K2WN-AniiaVJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033445438</pqid></control><display><type>article</type><title>Rod groups and their settings as special geometric realisations of line groups</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Evarestov, R. A. ; Panin, A. I.</creator><creatorcontrib>Evarestov, R. A. ; Panin, A. I.</creatorcontrib><description>Rod groups (monoperiodic subgroups of the 3‐periodic space groups) are considered as a special case of the commensurate line groups (discrete symmetry groups of the three‐dimensional objects translationally periodic along a line). Two different factorizations of line groups are considered: (1) The standard L = T(a)F used in crystallography for rod groups; F is a finite system of representatives of line‐group decomposition in cosets of 1‐periodic translation group T(a); (2) L = ZP used in the theory of line groups; Z is a cyclic generalized translation group and P is a finite point group. For symmorphic line groups (five line‐group families of 13 families) the two factorizations are equivalent: the cyclic group Z is a monoperiodic translation group and P is the point group defining the crystal class. For each of the remaining eight families of non‐symmorphic line groups the explicit correspondence between rod groups and relevant geometric realisations of the corresponding line groups is established. The settings of rod groups and line groups are taken into account. The results are presented in a table of 75 rod groups listed (in international and factorized notation) by families of the line groups according to the order of the principal axis q (q = 1, 2, 3, 4, 6) of the corresponding isogonal point group.</description><identifier>ISSN: 0108-7673</identifier><identifier>EISSN: 1600-5724</identifier><identifier>EISSN: 2053-2733</identifier><identifier>DOI: 10.1107/S0108767312026670</identifier><identifier>PMID: 22893241</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Crystallography ; different factorizations ; Equivalence ; Factorization ; Geometrical optics ; Group theory ; line groups ; Mathematical analysis ; orbits ; rod groups ; Tables (data) ; Three dimensional ; Translations</subject><ispartof>Acta crystallographica. Section A, Foundations of crystallography, 2012-09, Vol.68 (5), p.582-588</ispartof><rights>International Union of Crystallography, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4497-c11eea2162fdfc2f8d26669f425d10880a1b8cd247ab43e2a1d2e1e595965b6c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0108767312026670$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0108767312026670$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27925,27926,45575,45576</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22893241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evarestov, R. A.</creatorcontrib><creatorcontrib>Panin, A. I.</creatorcontrib><title>Rod groups and their settings as special geometric realisations of line groups</title><title>Acta crystallographica. Section A, Foundations of crystallography</title><addtitle>Acta Cryst. A</addtitle><description>Rod groups (monoperiodic subgroups of the 3‐periodic space groups) are considered as a special case of the commensurate line groups (discrete symmetry groups of the three‐dimensional objects translationally periodic along a line). Two different factorizations of line groups are considered: (1) The standard L = T(a)F used in crystallography for rod groups; F is a finite system of representatives of line‐group decomposition in cosets of 1‐periodic translation group T(a); (2) L = ZP used in the theory of line groups; Z is a cyclic generalized translation group and P is a finite point group. For symmorphic line groups (five line‐group families of 13 families) the two factorizations are equivalent: the cyclic group Z is a monoperiodic translation group and P is the point group defining the crystal class. For each of the remaining eight families of non‐symmorphic line groups the explicit correspondence between rod groups and relevant geometric realisations of the corresponding line groups is established. The settings of rod groups and line groups are taken into account. The results are presented in a table of 75 rod groups listed (in international and factorized notation) by families of the line groups according to the order of the principal axis q (q = 1, 2, 3, 4, 6) of the corresponding isogonal point group.</description><subject>Crystallography</subject><subject>different factorizations</subject><subject>Equivalence</subject><subject>Factorization</subject><subject>Geometrical optics</subject><subject>Group theory</subject><subject>line groups</subject><subject>Mathematical analysis</subject><subject>orbits</subject><subject>rod groups</subject><subject>Tables (data)</subject><subject>Three dimensional</subject><subject>Translations</subject><issn>0108-7673</issn><issn>1600-5724</issn><issn>2053-2733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi1ERUPhB3BBlrhw2dbjz91j1EKpFIogIAQXy_HOBpfNOti7gv57HBJ6gAOcLHme59WMXkKeADsFYOZsyYDVRhsBnHGtDbtHZqAZq5Th8j6Z7cbVbn5MHuZ8wxgDAewBOea8bgSXMCPX72JL1ylO20zd0NLxC4ZEM45jGNblK9O8RR9cT9cYNzim4GlC14fsxhCHTGNH-zDgIeMROepcn_Hx4T0hH16-eH_-qlq8ubw6ny8qL2VjKg-A6Dho3rWd513dlvV100mu2rJzzRysat9yadxKCuQOWo6AqlGNVivtxQl5vs_dpvhtwjzaTcge-94NGKdsSwjfxQv4D1QIXXMFsqDP_kBv4pSGcsgvSkolRV0o2FM-xZwTdnabwsal2wLZXS_2r16K8_SQPK022N4Zv4soQL0Hvoceb_-daOef5hevFeOmqNVeDXnEH3eqS19tEYyyH68v7YIvl28_K2WN-AniiaVJ</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Evarestov, R. A.</creator><creator>Panin, A. I.</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120901</creationdate><title>Rod groups and their settings as special geometric realisations of line groups</title><author>Evarestov, R. A. ; Panin, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4497-c11eea2162fdfc2f8d26669f425d10880a1b8cd247ab43e2a1d2e1e595965b6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Crystallography</topic><topic>different factorizations</topic><topic>Equivalence</topic><topic>Factorization</topic><topic>Geometrical optics</topic><topic>Group theory</topic><topic>line groups</topic><topic>Mathematical analysis</topic><topic>orbits</topic><topic>rod groups</topic><topic>Tables (data)</topic><topic>Three dimensional</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evarestov, R. A.</creatorcontrib><creatorcontrib>Panin, A. I.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evarestov, R. A.</au><au>Panin, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rod groups and their settings as special geometric realisations of line groups</atitle><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle><addtitle>Acta Cryst. A</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>68</volume><issue>5</issue><spage>582</spage><epage>588</epage><pages>582-588</pages><issn>0108-7673</issn><eissn>1600-5724</eissn><eissn>2053-2733</eissn><abstract>Rod groups (monoperiodic subgroups of the 3‐periodic space groups) are considered as a special case of the commensurate line groups (discrete symmetry groups of the three‐dimensional objects translationally periodic along a line). Two different factorizations of line groups are considered: (1) The standard L = T(a)F used in crystallography for rod groups; F is a finite system of representatives of line‐group decomposition in cosets of 1‐periodic translation group T(a); (2) L = ZP used in the theory of line groups; Z is a cyclic generalized translation group and P is a finite point group. For symmorphic line groups (five line‐group families of 13 families) the two factorizations are equivalent: the cyclic group Z is a monoperiodic translation group and P is the point group defining the crystal class. For each of the remaining eight families of non‐symmorphic line groups the explicit correspondence between rod groups and relevant geometric realisations of the corresponding line groups is established. The settings of rod groups and line groups are taken into account. The results are presented in a table of 75 rod groups listed (in international and factorized notation) by families of the line groups according to the order of the principal axis q (q = 1, 2, 3, 4, 6) of the corresponding isogonal point group.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>22893241</pmid><doi>10.1107/S0108767312026670</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0108-7673 |
ispartof | Acta crystallographica. Section A, Foundations of crystallography, 2012-09, Vol.68 (5), p.582-588 |
issn | 0108-7673 1600-5724 2053-2733 |
language | eng |
recordid | cdi_proquest_miscellaneous_1082216231 |
source | Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | Crystallography different factorizations Equivalence Factorization Geometrical optics Group theory line groups Mathematical analysis orbits rod groups Tables (data) Three dimensional Translations |
title | Rod groups and their settings as special geometric realisations of line groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rod%20groups%20and%20their%20settings%20as%20special%20geometric%20realisations%20of%20line%20groups&rft.jtitle=Acta%20crystallographica.%20Section%20A,%20Foundations%20of%20crystallography&rft.au=Evarestov,%20R.%20A.&rft.date=2012-09-01&rft.volume=68&rft.issue=5&rft.spage=582&rft.epage=588&rft.pages=582-588&rft.issn=0108-7673&rft.eissn=1600-5724&rft_id=info:doi/10.1107/S0108767312026670&rft_dat=%3Cproquest_cross%3E1033682514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033445438&rft_id=info:pmid/22893241&rfr_iscdi=true |