Rod groups and their settings as special geometric realisations of line groups

Rod groups (monoperiodic subgroups of the 3‐periodic space groups) are considered as a special case of the commensurate line groups (discrete symmetry groups of the three‐dimensional objects translationally periodic along a line). Two different factorizations of line groups are considered: (1) The s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section A, Foundations of crystallography Foundations of crystallography, 2012-09, Vol.68 (5), p.582-588
Hauptverfasser: Evarestov, R. A., Panin, A. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 588
container_issue 5
container_start_page 582
container_title Acta crystallographica. Section A, Foundations of crystallography
container_volume 68
creator Evarestov, R. A.
Panin, A. I.
description Rod groups (monoperiodic subgroups of the 3‐periodic space groups) are considered as a special case of the commensurate line groups (discrete symmetry groups of the three‐dimensional objects translationally periodic along a line). Two different factorizations of line groups are considered: (1) The standard L = T(a)F used in crystallography for rod groups; F is a finite system of representatives of line‐group decomposition in cosets of 1‐periodic translation group T(a); (2) L = ZP used in the theory of line groups; Z is a cyclic generalized translation group and P is a finite point group. For symmorphic line groups (five line‐group families of 13 families) the two factorizations are equivalent: the cyclic group Z is a monoperiodic translation group and P is the point group defining the crystal class. For each of the remaining eight families of non‐symmorphic line groups the explicit correspondence between rod groups and relevant geometric realisations of the corresponding line groups is established. The settings of rod groups and line groups are taken into account. The results are presented in a table of 75 rod groups listed (in international and factorized notation) by families of the line groups according to the order of the principal axis q (q = 1, 2, 3, 4, 6) of the corresponding isogonal point group.
doi_str_mv 10.1107/S0108767312026670
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082216231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1033682514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4497-c11eea2162fdfc2f8d26669f425d10880a1b8cd247ab43e2a1d2e1e595965b6c3</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi1ERUPhB3BBlrhw2dbjz91j1EKpFIogIAQXy_HOBpfNOti7gv57HBJ6gAOcLHme59WMXkKeADsFYOZsyYDVRhsBnHGtDbtHZqAZq5Th8j6Z7cbVbn5MHuZ8wxgDAewBOea8bgSXMCPX72JL1ylO20zd0NLxC4ZEM45jGNblK9O8RR9cT9cYNzim4GlC14fsxhCHTGNH-zDgIeMROepcn_Hx4T0hH16-eH_-qlq8ubw6ny8qL2VjKg-A6Dho3rWd513dlvV100mu2rJzzRysat9yadxKCuQOWo6AqlGNVivtxQl5vs_dpvhtwjzaTcge-94NGKdsSwjfxQv4D1QIXXMFsqDP_kBv4pSGcsgvSkolRV0o2FM-xZwTdnabwsal2wLZXS_2r16K8_SQPK022N4Zv4soQL0Hvoceb_-daOef5hevFeOmqNVeDXnEH3eqS19tEYyyH68v7YIvl28_K2WN-AniiaVJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033445438</pqid></control><display><type>article</type><title>Rod groups and their settings as special geometric realisations of line groups</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Evarestov, R. A. ; Panin, A. I.</creator><creatorcontrib>Evarestov, R. A. ; Panin, A. I.</creatorcontrib><description>Rod groups (monoperiodic subgroups of the 3‐periodic space groups) are considered as a special case of the commensurate line groups (discrete symmetry groups of the three‐dimensional objects translationally periodic along a line). Two different factorizations of line groups are considered: (1) The standard L = T(a)F used in crystallography for rod groups; F is a finite system of representatives of line‐group decomposition in cosets of 1‐periodic translation group T(a); (2) L = ZP used in the theory of line groups; Z is a cyclic generalized translation group and P is a finite point group. For symmorphic line groups (five line‐group families of 13 families) the two factorizations are equivalent: the cyclic group Z is a monoperiodic translation group and P is the point group defining the crystal class. For each of the remaining eight families of non‐symmorphic line groups the explicit correspondence between rod groups and relevant geometric realisations of the corresponding line groups is established. The settings of rod groups and line groups are taken into account. The results are presented in a table of 75 rod groups listed (in international and factorized notation) by families of the line groups according to the order of the principal axis q (q = 1, 2, 3, 4, 6) of the corresponding isogonal point group.</description><identifier>ISSN: 0108-7673</identifier><identifier>EISSN: 1600-5724</identifier><identifier>EISSN: 2053-2733</identifier><identifier>DOI: 10.1107/S0108767312026670</identifier><identifier>PMID: 22893241</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Crystallography ; different factorizations ; Equivalence ; Factorization ; Geometrical optics ; Group theory ; line groups ; Mathematical analysis ; orbits ; rod groups ; Tables (data) ; Three dimensional ; Translations</subject><ispartof>Acta crystallographica. Section A, Foundations of crystallography, 2012-09, Vol.68 (5), p.582-588</ispartof><rights>International Union of Crystallography, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4497-c11eea2162fdfc2f8d26669f425d10880a1b8cd247ab43e2a1d2e1e595965b6c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0108767312026670$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0108767312026670$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27925,27926,45575,45576</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22893241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evarestov, R. A.</creatorcontrib><creatorcontrib>Panin, A. I.</creatorcontrib><title>Rod groups and their settings as special geometric realisations of line groups</title><title>Acta crystallographica. Section A, Foundations of crystallography</title><addtitle>Acta Cryst. A</addtitle><description>Rod groups (monoperiodic subgroups of the 3‐periodic space groups) are considered as a special case of the commensurate line groups (discrete symmetry groups of the three‐dimensional objects translationally periodic along a line). Two different factorizations of line groups are considered: (1) The standard L = T(a)F used in crystallography for rod groups; F is a finite system of representatives of line‐group decomposition in cosets of 1‐periodic translation group T(a); (2) L = ZP used in the theory of line groups; Z is a cyclic generalized translation group and P is a finite point group. For symmorphic line groups (five line‐group families of 13 families) the two factorizations are equivalent: the cyclic group Z is a monoperiodic translation group and P is the point group defining the crystal class. For each of the remaining eight families of non‐symmorphic line groups the explicit correspondence between rod groups and relevant geometric realisations of the corresponding line groups is established. The settings of rod groups and line groups are taken into account. The results are presented in a table of 75 rod groups listed (in international and factorized notation) by families of the line groups according to the order of the principal axis q (q = 1, 2, 3, 4, 6) of the corresponding isogonal point group.</description><subject>Crystallography</subject><subject>different factorizations</subject><subject>Equivalence</subject><subject>Factorization</subject><subject>Geometrical optics</subject><subject>Group theory</subject><subject>line groups</subject><subject>Mathematical analysis</subject><subject>orbits</subject><subject>rod groups</subject><subject>Tables (data)</subject><subject>Three dimensional</subject><subject>Translations</subject><issn>0108-7673</issn><issn>1600-5724</issn><issn>2053-2733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi1ERUPhB3BBlrhw2dbjz91j1EKpFIogIAQXy_HOBpfNOti7gv57HBJ6gAOcLHme59WMXkKeADsFYOZsyYDVRhsBnHGtDbtHZqAZq5Th8j6Z7cbVbn5MHuZ8wxgDAewBOea8bgSXMCPX72JL1ylO20zd0NLxC4ZEM45jGNblK9O8RR9cT9cYNzim4GlC14fsxhCHTGNH-zDgIeMROepcn_Hx4T0hH16-eH_-qlq8ubw6ny8qL2VjKg-A6Dho3rWd513dlvV100mu2rJzzRysat9yadxKCuQOWo6AqlGNVivtxQl5vs_dpvhtwjzaTcge-94NGKdsSwjfxQv4D1QIXXMFsqDP_kBv4pSGcsgvSkolRV0o2FM-xZwTdnabwsal2wLZXS_2r16K8_SQPK022N4Zv4soQL0Hvoceb_-daOef5hevFeOmqNVeDXnEH3eqS19tEYyyH68v7YIvl28_K2WN-AniiaVJ</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Evarestov, R. A.</creator><creator>Panin, A. I.</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120901</creationdate><title>Rod groups and their settings as special geometric realisations of line groups</title><author>Evarestov, R. A. ; Panin, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4497-c11eea2162fdfc2f8d26669f425d10880a1b8cd247ab43e2a1d2e1e595965b6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Crystallography</topic><topic>different factorizations</topic><topic>Equivalence</topic><topic>Factorization</topic><topic>Geometrical optics</topic><topic>Group theory</topic><topic>line groups</topic><topic>Mathematical analysis</topic><topic>orbits</topic><topic>rod groups</topic><topic>Tables (data)</topic><topic>Three dimensional</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evarestov, R. A.</creatorcontrib><creatorcontrib>Panin, A. I.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evarestov, R. A.</au><au>Panin, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rod groups and their settings as special geometric realisations of line groups</atitle><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle><addtitle>Acta Cryst. A</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>68</volume><issue>5</issue><spage>582</spage><epage>588</epage><pages>582-588</pages><issn>0108-7673</issn><eissn>1600-5724</eissn><eissn>2053-2733</eissn><abstract>Rod groups (monoperiodic subgroups of the 3‐periodic space groups) are considered as a special case of the commensurate line groups (discrete symmetry groups of the three‐dimensional objects translationally periodic along a line). Two different factorizations of line groups are considered: (1) The standard L = T(a)F used in crystallography for rod groups; F is a finite system of representatives of line‐group decomposition in cosets of 1‐periodic translation group T(a); (2) L = ZP used in the theory of line groups; Z is a cyclic generalized translation group and P is a finite point group. For symmorphic line groups (five line‐group families of 13 families) the two factorizations are equivalent: the cyclic group Z is a monoperiodic translation group and P is the point group defining the crystal class. For each of the remaining eight families of non‐symmorphic line groups the explicit correspondence between rod groups and relevant geometric realisations of the corresponding line groups is established. The settings of rod groups and line groups are taken into account. The results are presented in a table of 75 rod groups listed (in international and factorized notation) by families of the line groups according to the order of the principal axis q (q = 1, 2, 3, 4, 6) of the corresponding isogonal point group.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>22893241</pmid><doi>10.1107/S0108767312026670</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0108-7673
ispartof Acta crystallographica. Section A, Foundations of crystallography, 2012-09, Vol.68 (5), p.582-588
issn 0108-7673
1600-5724
2053-2733
language eng
recordid cdi_proquest_miscellaneous_1082216231
source Access via Wiley Online Library; Alma/SFX Local Collection
subjects Crystallography
different factorizations
Equivalence
Factorization
Geometrical optics
Group theory
line groups
Mathematical analysis
orbits
rod groups
Tables (data)
Three dimensional
Translations
title Rod groups and their settings as special geometric realisations of line groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rod%20groups%20and%20their%20settings%20as%20special%20geometric%20realisations%20of%20line%20groups&rft.jtitle=Acta%20crystallographica.%20Section%20A,%20Foundations%20of%20crystallography&rft.au=Evarestov,%20R.%20A.&rft.date=2012-09-01&rft.volume=68&rft.issue=5&rft.spage=582&rft.epage=588&rft.pages=582-588&rft.issn=0108-7673&rft.eissn=1600-5724&rft_id=info:doi/10.1107/S0108767312026670&rft_dat=%3Cproquest_cross%3E1033682514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033445438&rft_id=info:pmid/22893241&rfr_iscdi=true