Ternary codes from the strongly regular (45, 12, 3, 3) graphs and orbit matrices of 2-(45, 12, 3) designs

The enumeration of strongly regular graphs with parameters (45, 12, 3, 3) has been completed, and it is known that there are 78 non-isomorphic strongly regular (45, 12, 3, 3) graphs. A strongly regular graph with these parameters is a symmetric (45, 12, 3) design having a polarity with no absolute p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2012-10, Vol.312 (20), p.3000-3010
Hauptverfasser: Crnković, Dean, Rodrigues, B.G., Rukavina, Sanja, Simčić, Loredana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3010
container_issue 20
container_start_page 3000
container_title Discrete mathematics
container_volume 312
creator Crnković, Dean
Rodrigues, B.G.
Rukavina, Sanja
Simčić, Loredana
description The enumeration of strongly regular graphs with parameters (45, 12, 3, 3) has been completed, and it is known that there are 78 non-isomorphic strongly regular (45, 12, 3, 3) graphs. A strongly regular graph with these parameters is a symmetric (45, 12, 3) design having a polarity with no absolute points. In this paper we examine the ternary codes obtained from the adjacency (resp. incidence) matrices of these graphs (resp. designs), and those of their corresponding derived and residual designs. Further, we give a generalization of a result of Harada and Tonchev on the construction of non-binary self-orthogonal codes from orbit matrices of block designs under an action of a fixed-point-free automorphism of prime order. Using the generalized result we present a complete classification of self-orthogonal ternary codes of lengths 12, 13, 14, and 15, obtained from non-fixed parts of orbit matrices of symmetric (45, 12, 3) designs admitting an automorphism of order 3. Several of the codes obtained are optimal or near optimal for the given length and dimension. We show in addition that the dual codes of the strongly regular (45, 12, 3, 3) graphs admit majority logic decoding.
doi_str_mv 10.1016/j.disc.2012.06.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082216215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X12002750</els_id><sourcerecordid>1082216215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-8be183ac0fd265571a3ec587622f72dad7ff3fadf716f837788cce75e3f555413</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFWWCp0xD_NYuBHxBQU3Cu5CTG7GlJlJTaZC_70pFdwJFw73cs6B-yF0TklLCZVXq9bH4lpGKGuJbKscoBnVijVS0_dDNCP11HAp3o_RSSkrUnfJ9QzFV8ijzVvskoeCQ04Dnj4Blymnseu3OEO36W3GF9digSlbYF7nEnfZrj8LtqPHKX_ECQ92ytHVihQwa_7cl7j2xm4sp-go2L7A2a_O0dvD_evdU7N8eXy-u102jis1NfoDqObWkeCZFEJRy8EJrSRjQTFvvQqBB-uDojLoGtHaOVACeBBCXFM-Rxf73nVOXxsokxkqGuh7O0LaFEOJZoxKRkW1sr3V5VRKhmDWOQ6VRjWZHVezMjuuZsfVEGmq1NDNPgT1ie8I2RQXYXTgYwY3GZ_if_Efp9d9RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082216215</pqid></control><display><type>article</type><title>Ternary codes from the strongly regular (45, 12, 3, 3) graphs and orbit matrices of 2-(45, 12, 3) designs</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Crnković, Dean ; Rodrigues, B.G. ; Rukavina, Sanja ; Simčić, Loredana</creator><creatorcontrib>Crnković, Dean ; Rodrigues, B.G. ; Rukavina, Sanja ; Simčić, Loredana</creatorcontrib><description>The enumeration of strongly regular graphs with parameters (45, 12, 3, 3) has been completed, and it is known that there are 78 non-isomorphic strongly regular (45, 12, 3, 3) graphs. A strongly regular graph with these parameters is a symmetric (45, 12, 3) design having a polarity with no absolute points. In this paper we examine the ternary codes obtained from the adjacency (resp. incidence) matrices of these graphs (resp. designs), and those of their corresponding derived and residual designs. Further, we give a generalization of a result of Harada and Tonchev on the construction of non-binary self-orthogonal codes from orbit matrices of block designs under an action of a fixed-point-free automorphism of prime order. Using the generalized result we present a complete classification of self-orthogonal ternary codes of lengths 12, 13, 14, and 15, obtained from non-fixed parts of orbit matrices of symmetric (45, 12, 3) designs admitting an automorphism of order 3. Several of the codes obtained are optimal or near optimal for the given length and dimension. We show in addition that the dual codes of the strongly regular (45, 12, 3, 3) graphs admit majority logic decoding.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2012.06.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Automorphism groups ; Automorphisms ; Codes ; Graphs ; Mathematical analysis ; Matrices ; Matrix methods ; Optimization ; Orbit matrices ; Orbits ; Polarity ; Strongly regular graphs ; Symmetric designs</subject><ispartof>Discrete mathematics, 2012-10, Vol.312 (20), p.3000-3010</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-8be183ac0fd265571a3ec587622f72dad7ff3fadf716f837788cce75e3f555413</citedby><cites>FETCH-LOGICAL-c377t-8be183ac0fd265571a3ec587622f72dad7ff3fadf716f837788cce75e3f555413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.disc.2012.06.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Crnković, Dean</creatorcontrib><creatorcontrib>Rodrigues, B.G.</creatorcontrib><creatorcontrib>Rukavina, Sanja</creatorcontrib><creatorcontrib>Simčić, Loredana</creatorcontrib><title>Ternary codes from the strongly regular (45, 12, 3, 3) graphs and orbit matrices of 2-(45, 12, 3) designs</title><title>Discrete mathematics</title><description>The enumeration of strongly regular graphs with parameters (45, 12, 3, 3) has been completed, and it is known that there are 78 non-isomorphic strongly regular (45, 12, 3, 3) graphs. A strongly regular graph with these parameters is a symmetric (45, 12, 3) design having a polarity with no absolute points. In this paper we examine the ternary codes obtained from the adjacency (resp. incidence) matrices of these graphs (resp. designs), and those of their corresponding derived and residual designs. Further, we give a generalization of a result of Harada and Tonchev on the construction of non-binary self-orthogonal codes from orbit matrices of block designs under an action of a fixed-point-free automorphism of prime order. Using the generalized result we present a complete classification of self-orthogonal ternary codes of lengths 12, 13, 14, and 15, obtained from non-fixed parts of orbit matrices of symmetric (45, 12, 3) designs admitting an automorphism of order 3. Several of the codes obtained are optimal or near optimal for the given length and dimension. We show in addition that the dual codes of the strongly regular (45, 12, 3, 3) graphs admit majority logic decoding.</description><subject>Automorphism groups</subject><subject>Automorphisms</subject><subject>Codes</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Optimization</subject><subject>Orbit matrices</subject><subject>Orbits</subject><subject>Polarity</subject><subject>Strongly regular graphs</subject><subject>Symmetric designs</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFWWCp0xD_NYuBHxBQU3Cu5CTG7GlJlJTaZC_70pFdwJFw73cs6B-yF0TklLCZVXq9bH4lpGKGuJbKscoBnVijVS0_dDNCP11HAp3o_RSSkrUnfJ9QzFV8ijzVvskoeCQ04Dnj4Blymnseu3OEO36W3GF9digSlbYF7nEnfZrj8LtqPHKX_ECQ92ytHVihQwa_7cl7j2xm4sp-go2L7A2a_O0dvD_evdU7N8eXy-u102jis1NfoDqObWkeCZFEJRy8EJrSRjQTFvvQqBB-uDojLoGtHaOVACeBBCXFM-Rxf73nVOXxsokxkqGuh7O0LaFEOJZoxKRkW1sr3V5VRKhmDWOQ6VRjWZHVezMjuuZsfVEGmq1NDNPgT1ie8I2RQXYXTgYwY3GZ_if_Efp9d9RA</recordid><startdate>20121028</startdate><enddate>20121028</enddate><creator>Crnković, Dean</creator><creator>Rodrigues, B.G.</creator><creator>Rukavina, Sanja</creator><creator>Simčić, Loredana</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121028</creationdate><title>Ternary codes from the strongly regular (45, 12, 3, 3) graphs and orbit matrices of 2-(45, 12, 3) designs</title><author>Crnković, Dean ; Rodrigues, B.G. ; Rukavina, Sanja ; Simčić, Loredana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-8be183ac0fd265571a3ec587622f72dad7ff3fadf716f837788cce75e3f555413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Automorphism groups</topic><topic>Automorphisms</topic><topic>Codes</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Optimization</topic><topic>Orbit matrices</topic><topic>Orbits</topic><topic>Polarity</topic><topic>Strongly regular graphs</topic><topic>Symmetric designs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crnković, Dean</creatorcontrib><creatorcontrib>Rodrigues, B.G.</creatorcontrib><creatorcontrib>Rukavina, Sanja</creatorcontrib><creatorcontrib>Simčić, Loredana</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crnković, Dean</au><au>Rodrigues, B.G.</au><au>Rukavina, Sanja</au><au>Simčić, Loredana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ternary codes from the strongly regular (45, 12, 3, 3) graphs and orbit matrices of 2-(45, 12, 3) designs</atitle><jtitle>Discrete mathematics</jtitle><date>2012-10-28</date><risdate>2012</risdate><volume>312</volume><issue>20</issue><spage>3000</spage><epage>3010</epage><pages>3000-3010</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>The enumeration of strongly regular graphs with parameters (45, 12, 3, 3) has been completed, and it is known that there are 78 non-isomorphic strongly regular (45, 12, 3, 3) graphs. A strongly regular graph with these parameters is a symmetric (45, 12, 3) design having a polarity with no absolute points. In this paper we examine the ternary codes obtained from the adjacency (resp. incidence) matrices of these graphs (resp. designs), and those of their corresponding derived and residual designs. Further, we give a generalization of a result of Harada and Tonchev on the construction of non-binary self-orthogonal codes from orbit matrices of block designs under an action of a fixed-point-free automorphism of prime order. Using the generalized result we present a complete classification of self-orthogonal ternary codes of lengths 12, 13, 14, and 15, obtained from non-fixed parts of orbit matrices of symmetric (45, 12, 3) designs admitting an automorphism of order 3. Several of the codes obtained are optimal or near optimal for the given length and dimension. We show in addition that the dual codes of the strongly regular (45, 12, 3, 3) graphs admit majority logic decoding.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2012.06.012</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2012-10, Vol.312 (20), p.3000-3010
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_1082216215
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Automorphism groups
Automorphisms
Codes
Graphs
Mathematical analysis
Matrices
Matrix methods
Optimization
Orbit matrices
Orbits
Polarity
Strongly regular graphs
Symmetric designs
title Ternary codes from the strongly regular (45, 12, 3, 3) graphs and orbit matrices of 2-(45, 12, 3) designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ternary%20codes%20from%20the%20strongly%20regular%20(45,%2012,%203,%203)%20graphs%20and%20orbit%20matrices%20of%202-(45,%2012,%203)%20designs&rft.jtitle=Discrete%20mathematics&rft.au=Crnkovi%C4%87,%20Dean&rft.date=2012-10-28&rft.volume=312&rft.issue=20&rft.spage=3000&rft.epage=3010&rft.pages=3000-3010&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2012.06.012&rft_dat=%3Cproquest_cross%3E1082216215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082216215&rft_id=info:pmid/&rft_els_id=S0012365X12002750&rfr_iscdi=true