Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements

► CoMnGe0.95Ga0.05 alloy shows a structural phase transformation from hexagonal to orthorhombic. ► In CoMnGe0.95Ga0.05, the giant magnetocaloric effect is observed around room temperature. ► The maximum magnetic entropy change is −5.2Jkg−1K−1 in magnetic field change of 1T. The structural, magnetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2012-11, Vol.540, p.236-240
Hauptverfasser: Dincer, I., Yüzüak, E., Durak, G., Elerman, Y., Bell, A.M.T., Ehrenberg, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue
container_start_page 236
container_title Journal of alloys and compounds
container_volume 540
creator Dincer, I.
Yüzüak, E.
Durak, G.
Elerman, Y.
Bell, A.M.T.
Ehrenberg, H.
description ► CoMnGe0.95Ga0.05 alloy shows a structural phase transformation from hexagonal to orthorhombic. ► In CoMnGe0.95Ga0.05, the giant magnetocaloric effect is observed around room temperature. ► The maximum magnetic entropy change is −5.2Jkg−1K−1 in magnetic field change of 1T. The structural, magnetic and magnetocaloric properties of CoMnGe0.95Ga0.05 have been investigated by using electron microscopy, calorimetric, synchrotron and magnetic measurements. The substitution of Ga for Ge leads to decreasing on the martensitic transition temperature from 650K to 315K. CoMnGe0.95Ga0.05 has hexagonal structure (space group P63/mmc) above the martensitic transition temperature and orthorhombic structure (space group Pnma) below this temperature. The magnetic field dependence of magnetization measurements are performed in the heating and cooling processes around the martensitic transition temperature to determine magnetocaloric effect. It is observed that the magnetic entropy change associated with the martensitic transition temperature can be as high as −5.2Jkg−1K−1 in field of 1T.
doi_str_mv 10.1016/j.jallcom.2012.05.072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082216138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838812008936</els_id><sourcerecordid>1082216138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-653ab6a18ea655a6dce2dfd7ec4c1ef76ae1a693b5760d758347350eb538e0e73</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMo2I4-gpCN4KZq8tNJpVYizdgKI250HW6nbk2nqUraJC32W_jIpqYbYVauwoXvnJt7DiFvOWs54_r20B5gmlycW8G4aJlqWSeekRU3nWzWWvfPyYr1QjVGGvOSvMr5wBjjveQr8ufu93GKyYcHWvZIByzgp0zj-DjOkAqG7It39LiHjLQkeJxjoBCGCjwELNHB4uEojiO6sqg38WvYImt7tQVWv0R3Z5rPwe1TLOmJuMpmhHxKOGMo-TV5McKU8c31vSE_Pt1933xu7r9tv2w-3jdOalMarSTsNHCDoJUCPTgUwzh06NaO49hpQA66lzvVaTZ0ysh1JxXDnZIGGXbyhry_-B5T_HnCXOzss8NpgoDxlC1nRgiuuTQVVRfUpZhzwtEek6_RnCtklwbswV4bsEsDlilbG6i6d9cVkGtCY43O-fxPLLTkZi0W_w8XDuu9vzwmm53H4HDwqcZph-j_s-kvTQ6hJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082216138</pqid></control><display><type>article</type><title>Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements</title><source>Elsevier ScienceDirect Journals</source><creator>Dincer, I. ; Yüzüak, E. ; Durak, G. ; Elerman, Y. ; Bell, A.M.T. ; Ehrenberg, H.</creator><creatorcontrib>Dincer, I. ; Yüzüak, E. ; Durak, G. ; Elerman, Y. ; Bell, A.M.T. ; Ehrenberg, H.</creatorcontrib><description>► CoMnGe0.95Ga0.05 alloy shows a structural phase transformation from hexagonal to orthorhombic. ► In CoMnGe0.95Ga0.05, the giant magnetocaloric effect is observed around room temperature. ► The maximum magnetic entropy change is −5.2Jkg−1K−1 in magnetic field change of 1T. The structural, magnetic and magnetocaloric properties of CoMnGe0.95Ga0.05 have been investigated by using electron microscopy, calorimetric, synchrotron and magnetic measurements. The substitution of Ga for Ge leads to decreasing on the martensitic transition temperature from 650K to 315K. CoMnGe0.95Ga0.05 has hexagonal structure (space group P63/mmc) above the martensitic transition temperature and orthorhombic structure (space group Pnma) below this temperature. The magnetic field dependence of magnetization measurements are performed in the heating and cooling processes around the martensitic transition temperature to determine magnetocaloric effect. It is observed that the magnetic entropy change associated with the martensitic transition temperature can be as high as −5.2Jkg−1K−1 in field of 1T.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2012.05.072</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cooling effects ; Cross-disciplinary physics: materials science; rheology ; Entropy ; Exact sciences and technology ; Gallium base alloys ; Germanium ; Magnetic fields ; Magnetic measurement ; Magnetic properties and materials ; Magnetically ordered materials: other intrinsic properties ; Magnetocaloric effect ; Magnetocaloric effect, magnetic cooling ; Martensitic transformations ; Martensitic transition ; Materials science ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Synchrotron measurements ; Synchrotrons ; Transition temperature</subject><ispartof>Journal of alloys and compounds, 2012-11, Vol.540, p.236-240</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-653ab6a18ea655a6dce2dfd7ec4c1ef76ae1a693b5760d758347350eb538e0e73</citedby><cites>FETCH-LOGICAL-c368t-653ab6a18ea655a6dce2dfd7ec4c1ef76ae1a693b5760d758347350eb538e0e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838812008936$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26318428$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dincer, I.</creatorcontrib><creatorcontrib>Yüzüak, E.</creatorcontrib><creatorcontrib>Durak, G.</creatorcontrib><creatorcontrib>Elerman, Y.</creatorcontrib><creatorcontrib>Bell, A.M.T.</creatorcontrib><creatorcontrib>Ehrenberg, H.</creatorcontrib><title>Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements</title><title>Journal of alloys and compounds</title><description>► CoMnGe0.95Ga0.05 alloy shows a structural phase transformation from hexagonal to orthorhombic. ► In CoMnGe0.95Ga0.05, the giant magnetocaloric effect is observed around room temperature. ► The maximum magnetic entropy change is −5.2Jkg−1K−1 in magnetic field change of 1T. The structural, magnetic and magnetocaloric properties of CoMnGe0.95Ga0.05 have been investigated by using electron microscopy, calorimetric, synchrotron and magnetic measurements. The substitution of Ga for Ge leads to decreasing on the martensitic transition temperature from 650K to 315K. CoMnGe0.95Ga0.05 has hexagonal structure (space group P63/mmc) above the martensitic transition temperature and orthorhombic structure (space group Pnma) below this temperature. The magnetic field dependence of magnetization measurements are performed in the heating and cooling processes around the martensitic transition temperature to determine magnetocaloric effect. It is observed that the magnetic entropy change associated with the martensitic transition temperature can be as high as −5.2Jkg−1K−1 in field of 1T.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cooling effects</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Gallium base alloys</subject><subject>Germanium</subject><subject>Magnetic fields</subject><subject>Magnetic measurement</subject><subject>Magnetic properties and materials</subject><subject>Magnetically ordered materials: other intrinsic properties</subject><subject>Magnetocaloric effect</subject><subject>Magnetocaloric effect, magnetic cooling</subject><subject>Martensitic transformations</subject><subject>Martensitic transition</subject><subject>Materials science</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Synchrotron measurements</subject><subject>Synchrotrons</subject><subject>Transition temperature</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc2KFDEUhYMo2I4-gpCN4KZq8tNJpVYizdgKI250HW6nbk2nqUraJC32W_jIpqYbYVauwoXvnJt7DiFvOWs54_r20B5gmlycW8G4aJlqWSeekRU3nWzWWvfPyYr1QjVGGvOSvMr5wBjjveQr8ufu93GKyYcHWvZIByzgp0zj-DjOkAqG7It39LiHjLQkeJxjoBCGCjwELNHB4uEojiO6sqg38WvYImt7tQVWv0R3Z5rPwe1TLOmJuMpmhHxKOGMo-TV5McKU8c31vSE_Pt1933xu7r9tv2w-3jdOalMarSTsNHCDoJUCPTgUwzh06NaO49hpQA66lzvVaTZ0ysh1JxXDnZIGGXbyhry_-B5T_HnCXOzss8NpgoDxlC1nRgiuuTQVVRfUpZhzwtEek6_RnCtklwbswV4bsEsDlilbG6i6d9cVkGtCY43O-fxPLLTkZi0W_w8XDuu9vzwmm53H4HDwqcZph-j_s-kvTQ6hJQ</recordid><startdate>20121105</startdate><enddate>20121105</enddate><creator>Dincer, I.</creator><creator>Yüzüak, E.</creator><creator>Durak, G.</creator><creator>Elerman, Y.</creator><creator>Bell, A.M.T.</creator><creator>Ehrenberg, H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20121105</creationdate><title>Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements</title><author>Dincer, I. ; Yüzüak, E. ; Durak, G. ; Elerman, Y. ; Bell, A.M.T. ; Ehrenberg, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-653ab6a18ea655a6dce2dfd7ec4c1ef76ae1a693b5760d758347350eb538e0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cooling effects</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Gallium base alloys</topic><topic>Germanium</topic><topic>Magnetic fields</topic><topic>Magnetic measurement</topic><topic>Magnetic properties and materials</topic><topic>Magnetically ordered materials: other intrinsic properties</topic><topic>Magnetocaloric effect</topic><topic>Magnetocaloric effect, magnetic cooling</topic><topic>Martensitic transformations</topic><topic>Martensitic transition</topic><topic>Materials science</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Synchrotron measurements</topic><topic>Synchrotrons</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dincer, I.</creatorcontrib><creatorcontrib>Yüzüak, E.</creatorcontrib><creatorcontrib>Durak, G.</creatorcontrib><creatorcontrib>Elerman, Y.</creatorcontrib><creatorcontrib>Bell, A.M.T.</creatorcontrib><creatorcontrib>Ehrenberg, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dincer, I.</au><au>Yüzüak, E.</au><au>Durak, G.</au><au>Elerman, Y.</au><au>Bell, A.M.T.</au><au>Ehrenberg, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2012-11-05</date><risdate>2012</risdate><volume>540</volume><spage>236</spage><epage>240</epage><pages>236-240</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>► CoMnGe0.95Ga0.05 alloy shows a structural phase transformation from hexagonal to orthorhombic. ► In CoMnGe0.95Ga0.05, the giant magnetocaloric effect is observed around room temperature. ► The maximum magnetic entropy change is −5.2Jkg−1K−1 in magnetic field change of 1T. The structural, magnetic and magnetocaloric properties of CoMnGe0.95Ga0.05 have been investigated by using electron microscopy, calorimetric, synchrotron and magnetic measurements. The substitution of Ga for Ge leads to decreasing on the martensitic transition temperature from 650K to 315K. CoMnGe0.95Ga0.05 has hexagonal structure (space group P63/mmc) above the martensitic transition temperature and orthorhombic structure (space group Pnma) below this temperature. The magnetic field dependence of magnetization measurements are performed in the heating and cooling processes around the martensitic transition temperature to determine magnetocaloric effect. It is observed that the magnetic entropy change associated with the martensitic transition temperature can be as high as −5.2Jkg−1K−1 in field of 1T.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2012.05.072</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2012-11, Vol.540, p.236-240
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_1082216138
source Elsevier ScienceDirect Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cooling effects
Cross-disciplinary physics: materials science
rheology
Entropy
Exact sciences and technology
Gallium base alloys
Germanium
Magnetic fields
Magnetic measurement
Magnetic properties and materials
Magnetically ordered materials: other intrinsic properties
Magnetocaloric effect
Magnetocaloric effect, magnetic cooling
Martensitic transformations
Martensitic transition
Materials science
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Synchrotron measurements
Synchrotrons
Transition temperature
title Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20details%20of%20the%20martensitic%20phase%20transition%20and%20magnetocaloric%20effect%20of%20CoMnGe0.95Ga0.05%20by%20synchrotron%20and%20magnetic%20measurements&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Dincer,%20I.&rft.date=2012-11-05&rft.volume=540&rft.spage=236&rft.epage=240&rft.pages=236-240&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2012.05.072&rft_dat=%3Cproquest_cross%3E1082216138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082216138&rft_id=info:pmid/&rft_els_id=S0925838812008936&rfr_iscdi=true