Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements
► CoMnGe0.95Ga0.05 alloy shows a structural phase transformation from hexagonal to orthorhombic. ► In CoMnGe0.95Ga0.05, the giant magnetocaloric effect is observed around room temperature. ► The maximum magnetic entropy change is −5.2Jkg−1K−1 in magnetic field change of 1T. The structural, magnetic...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2012-11, Vol.540, p.236-240 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 240 |
---|---|
container_issue | |
container_start_page | 236 |
container_title | Journal of alloys and compounds |
container_volume | 540 |
creator | Dincer, I. Yüzüak, E. Durak, G. Elerman, Y. Bell, A.M.T. Ehrenberg, H. |
description | ► CoMnGe0.95Ga0.05 alloy shows a structural phase transformation from hexagonal to orthorhombic. ► In CoMnGe0.95Ga0.05, the giant magnetocaloric effect is observed around room temperature. ► The maximum magnetic entropy change is −5.2Jkg−1K−1 in magnetic field change of 1T.
The structural, magnetic and magnetocaloric properties of CoMnGe0.95Ga0.05 have been investigated by using electron microscopy, calorimetric, synchrotron and magnetic measurements. The substitution of Ga for Ge leads to decreasing on the martensitic transition temperature from 650K to 315K. CoMnGe0.95Ga0.05 has hexagonal structure (space group P63/mmc) above the martensitic transition temperature and orthorhombic structure (space group Pnma) below this temperature. The magnetic field dependence of magnetization measurements are performed in the heating and cooling processes around the martensitic transition temperature to determine magnetocaloric effect. It is observed that the magnetic entropy change associated with the martensitic transition temperature can be as high as −5.2Jkg−1K−1 in field of 1T. |
doi_str_mv | 10.1016/j.jallcom.2012.05.072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082216138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838812008936</els_id><sourcerecordid>1082216138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-653ab6a18ea655a6dce2dfd7ec4c1ef76ae1a693b5760d758347350eb538e0e73</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMo2I4-gpCN4KZq8tNJpVYizdgKI250HW6nbk2nqUraJC32W_jIpqYbYVauwoXvnJt7DiFvOWs54_r20B5gmlycW8G4aJlqWSeekRU3nWzWWvfPyYr1QjVGGvOSvMr5wBjjveQr8ufu93GKyYcHWvZIByzgp0zj-DjOkAqG7It39LiHjLQkeJxjoBCGCjwELNHB4uEojiO6sqg38WvYImt7tQVWv0R3Z5rPwe1TLOmJuMpmhHxKOGMo-TV5McKU8c31vSE_Pt1933xu7r9tv2w-3jdOalMarSTsNHCDoJUCPTgUwzh06NaO49hpQA66lzvVaTZ0ysh1JxXDnZIGGXbyhry_-B5T_HnCXOzss8NpgoDxlC1nRgiuuTQVVRfUpZhzwtEek6_RnCtklwbswV4bsEsDlilbG6i6d9cVkGtCY43O-fxPLLTkZi0W_w8XDuu9vzwmm53H4HDwqcZph-j_s-kvTQ6hJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082216138</pqid></control><display><type>article</type><title>Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements</title><source>Elsevier ScienceDirect Journals</source><creator>Dincer, I. ; Yüzüak, E. ; Durak, G. ; Elerman, Y. ; Bell, A.M.T. ; Ehrenberg, H.</creator><creatorcontrib>Dincer, I. ; Yüzüak, E. ; Durak, G. ; Elerman, Y. ; Bell, A.M.T. ; Ehrenberg, H.</creatorcontrib><description>► CoMnGe0.95Ga0.05 alloy shows a structural phase transformation from hexagonal to orthorhombic. ► In CoMnGe0.95Ga0.05, the giant magnetocaloric effect is observed around room temperature. ► The maximum magnetic entropy change is −5.2Jkg−1K−1 in magnetic field change of 1T.
The structural, magnetic and magnetocaloric properties of CoMnGe0.95Ga0.05 have been investigated by using electron microscopy, calorimetric, synchrotron and magnetic measurements. The substitution of Ga for Ge leads to decreasing on the martensitic transition temperature from 650K to 315K. CoMnGe0.95Ga0.05 has hexagonal structure (space group P63/mmc) above the martensitic transition temperature and orthorhombic structure (space group Pnma) below this temperature. The magnetic field dependence of magnetization measurements are performed in the heating and cooling processes around the martensitic transition temperature to determine magnetocaloric effect. It is observed that the magnetic entropy change associated with the martensitic transition temperature can be as high as −5.2Jkg−1K−1 in field of 1T.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2012.05.072</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cooling effects ; Cross-disciplinary physics: materials science; rheology ; Entropy ; Exact sciences and technology ; Gallium base alloys ; Germanium ; Magnetic fields ; Magnetic measurement ; Magnetic properties and materials ; Magnetically ordered materials: other intrinsic properties ; Magnetocaloric effect ; Magnetocaloric effect, magnetic cooling ; Martensitic transformations ; Martensitic transition ; Materials science ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Synchrotron measurements ; Synchrotrons ; Transition temperature</subject><ispartof>Journal of alloys and compounds, 2012-11, Vol.540, p.236-240</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-653ab6a18ea655a6dce2dfd7ec4c1ef76ae1a693b5760d758347350eb538e0e73</citedby><cites>FETCH-LOGICAL-c368t-653ab6a18ea655a6dce2dfd7ec4c1ef76ae1a693b5760d758347350eb538e0e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838812008936$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26318428$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dincer, I.</creatorcontrib><creatorcontrib>Yüzüak, E.</creatorcontrib><creatorcontrib>Durak, G.</creatorcontrib><creatorcontrib>Elerman, Y.</creatorcontrib><creatorcontrib>Bell, A.M.T.</creatorcontrib><creatorcontrib>Ehrenberg, H.</creatorcontrib><title>Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements</title><title>Journal of alloys and compounds</title><description>► CoMnGe0.95Ga0.05 alloy shows a structural phase transformation from hexagonal to orthorhombic. ► In CoMnGe0.95Ga0.05, the giant magnetocaloric effect is observed around room temperature. ► The maximum magnetic entropy change is −5.2Jkg−1K−1 in magnetic field change of 1T.
The structural, magnetic and magnetocaloric properties of CoMnGe0.95Ga0.05 have been investigated by using electron microscopy, calorimetric, synchrotron and magnetic measurements. The substitution of Ga for Ge leads to decreasing on the martensitic transition temperature from 650K to 315K. CoMnGe0.95Ga0.05 has hexagonal structure (space group P63/mmc) above the martensitic transition temperature and orthorhombic structure (space group Pnma) below this temperature. The magnetic field dependence of magnetization measurements are performed in the heating and cooling processes around the martensitic transition temperature to determine magnetocaloric effect. It is observed that the magnetic entropy change associated with the martensitic transition temperature can be as high as −5.2Jkg−1K−1 in field of 1T.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cooling effects</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Gallium base alloys</subject><subject>Germanium</subject><subject>Magnetic fields</subject><subject>Magnetic measurement</subject><subject>Magnetic properties and materials</subject><subject>Magnetically ordered materials: other intrinsic properties</subject><subject>Magnetocaloric effect</subject><subject>Magnetocaloric effect, magnetic cooling</subject><subject>Martensitic transformations</subject><subject>Martensitic transition</subject><subject>Materials science</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Synchrotron measurements</subject><subject>Synchrotrons</subject><subject>Transition temperature</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc2KFDEUhYMo2I4-gpCN4KZq8tNJpVYizdgKI250HW6nbk2nqUraJC32W_jIpqYbYVauwoXvnJt7DiFvOWs54_r20B5gmlycW8G4aJlqWSeekRU3nWzWWvfPyYr1QjVGGvOSvMr5wBjjveQr8ufu93GKyYcHWvZIByzgp0zj-DjOkAqG7It39LiHjLQkeJxjoBCGCjwELNHB4uEojiO6sqg38WvYImt7tQVWv0R3Z5rPwe1TLOmJuMpmhHxKOGMo-TV5McKU8c31vSE_Pt1933xu7r9tv2w-3jdOalMarSTsNHCDoJUCPTgUwzh06NaO49hpQA66lzvVaTZ0ysh1JxXDnZIGGXbyhry_-B5T_HnCXOzss8NpgoDxlC1nRgiuuTQVVRfUpZhzwtEek6_RnCtklwbswV4bsEsDlilbG6i6d9cVkGtCY43O-fxPLLTkZi0W_w8XDuu9vzwmm53H4HDwqcZph-j_s-kvTQ6hJQ</recordid><startdate>20121105</startdate><enddate>20121105</enddate><creator>Dincer, I.</creator><creator>Yüzüak, E.</creator><creator>Durak, G.</creator><creator>Elerman, Y.</creator><creator>Bell, A.M.T.</creator><creator>Ehrenberg, H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20121105</creationdate><title>Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements</title><author>Dincer, I. ; Yüzüak, E. ; Durak, G. ; Elerman, Y. ; Bell, A.M.T. ; Ehrenberg, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-653ab6a18ea655a6dce2dfd7ec4c1ef76ae1a693b5760d758347350eb538e0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cooling effects</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Gallium base alloys</topic><topic>Germanium</topic><topic>Magnetic fields</topic><topic>Magnetic measurement</topic><topic>Magnetic properties and materials</topic><topic>Magnetically ordered materials: other intrinsic properties</topic><topic>Magnetocaloric effect</topic><topic>Magnetocaloric effect, magnetic cooling</topic><topic>Martensitic transformations</topic><topic>Martensitic transition</topic><topic>Materials science</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Synchrotron measurements</topic><topic>Synchrotrons</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dincer, I.</creatorcontrib><creatorcontrib>Yüzüak, E.</creatorcontrib><creatorcontrib>Durak, G.</creatorcontrib><creatorcontrib>Elerman, Y.</creatorcontrib><creatorcontrib>Bell, A.M.T.</creatorcontrib><creatorcontrib>Ehrenberg, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dincer, I.</au><au>Yüzüak, E.</au><au>Durak, G.</au><au>Elerman, Y.</au><au>Bell, A.M.T.</au><au>Ehrenberg, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2012-11-05</date><risdate>2012</risdate><volume>540</volume><spage>236</spage><epage>240</epage><pages>236-240</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>► CoMnGe0.95Ga0.05 alloy shows a structural phase transformation from hexagonal to orthorhombic. ► In CoMnGe0.95Ga0.05, the giant magnetocaloric effect is observed around room temperature. ► The maximum magnetic entropy change is −5.2Jkg−1K−1 in magnetic field change of 1T.
The structural, magnetic and magnetocaloric properties of CoMnGe0.95Ga0.05 have been investigated by using electron microscopy, calorimetric, synchrotron and magnetic measurements. The substitution of Ga for Ge leads to decreasing on the martensitic transition temperature from 650K to 315K. CoMnGe0.95Ga0.05 has hexagonal structure (space group P63/mmc) above the martensitic transition temperature and orthorhombic structure (space group Pnma) below this temperature. The magnetic field dependence of magnetization measurements are performed in the heating and cooling processes around the martensitic transition temperature to determine magnetocaloric effect. It is observed that the magnetic entropy change associated with the martensitic transition temperature can be as high as −5.2Jkg−1K−1 in field of 1T.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2012.05.072</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2012-11, Vol.540, p.236-240 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_miscellaneous_1082216138 |
source | Elsevier ScienceDirect Journals |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Cooling effects Cross-disciplinary physics: materials science rheology Entropy Exact sciences and technology Gallium base alloys Germanium Magnetic fields Magnetic measurement Magnetic properties and materials Magnetically ordered materials: other intrinsic properties Magnetocaloric effect Magnetocaloric effect, magnetic cooling Martensitic transformations Martensitic transition Materials science Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Synchrotron measurements Synchrotrons Transition temperature |
title | Exploring the details of the martensitic phase transition and magnetocaloric effect of CoMnGe0.95Ga0.05 by synchrotron and magnetic measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20details%20of%20the%20martensitic%20phase%20transition%20and%20magnetocaloric%20effect%20of%20CoMnGe0.95Ga0.05%20by%20synchrotron%20and%20magnetic%20measurements&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Dincer,%20I.&rft.date=2012-11-05&rft.volume=540&rft.spage=236&rft.epage=240&rft.pages=236-240&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2012.05.072&rft_dat=%3Cproquest_cross%3E1082216138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082216138&rft_id=info:pmid/&rft_els_id=S0925838812008936&rfr_iscdi=true |