Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue

► 3D FE implementation of continuum damage mechanics for multiaxial fatigue. ► Validation for uniaxial and notched fatigue and fretting fatigue for Ti–6Al–4V. ► Automatic incrementation scheme for efficient computation of damage accumulation. ► Captures effect of contact slip on fatigue life for rou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2012-11, Vol.44, p.260-272
Hauptverfasser: Zhang, T., McHugh, P.E., Leen, S.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 272
container_issue
container_start_page 260
container_title International journal of fatigue
container_volume 44
creator Zhang, T.
McHugh, P.E.
Leen, S.B.
description ► 3D FE implementation of continuum damage mechanics for multiaxial fatigue. ► Validation for uniaxial and notched fatigue and fretting fatigue for Ti–6Al–4V. ► Automatic incrementation scheme for efficient computation of damage accumulation. ► Captures effect of contact slip on fatigue life for round-on-flat fretting geometry. ► Comparisons with critical-plane multiaxial fatigue approach for fretting. The three-dimensional finite element implementation of a continuum damage mechanics formulation for multiaxial fatigue is presented, incorporating elastic modulus reduction due to fatigue damage. The implementation is validated against theoretical and published experimental results for uniaxial and notched multiaxial fatigue under different combinations of mean and alternating stresses for Ti–6Al–4V. An automatic incrementation scheme is developed for efficient computation of damage accumulation and hence stress redistribution. The method is also implemented in two-dimensional, plane strain for fretting fatigue and is shown to successfully capture the effect of contact slip on fatigue life for a round-on-flat fretting geometry. Comparisons are also made with a critical-plane multiaxial fatigue approach for fretting. The work is a first step towards a more general fatigue damage approach to unify wear and fatigue prediction for fretting.
doi_str_mv 10.1016/j.ijfatigue.2012.04.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082214057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112312001508</els_id><sourcerecordid>1082214057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-dc3c15fb572713a2981187eae5c080fbce4c5ac7fa9678cff401a4d5420722f83</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVpodukv6G6FHqxO5LllX0MIUkLgVySs5iMR1sttryV5JL8-3jZJdeeZg7fe2_mCfFNQa1AbX_u67D3WMJu4VqD0jWYGpT6IDaqs33VmFZ_FBtQRldK6eaz-JLzHgB6sO1G8G2IobDkkSeORYbpcNpWxznK2ctpGUvAl4CjpDmWEJdlkgNOuGM5Mf3BGChLPyd5GDFEiXGQPnFZyZ08H3YpPnkcM389zwvxdHvzeP2run-4-319dV9RY7tSDdSQav1za7VVDeq-U-sPjNwSdOCfiQ21SNZjv7UdeW9AoRlao8Fq7bvmQvw4-R7S_HfhXNwUMvE4YuR5yU5Bp7Uy0NoVtSeU0pxzYu8OKUyYXlfIHYt1e_derDsW68C4tdhV-f0cgplw9Akjhfwu11tterM9clcnjteP_wVOLlPgSDyExFTcMIf_Zr0BaNGUuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082214057</pqid></control><display><type>article</type><title>Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Zhang, T. ; McHugh, P.E. ; Leen, S.B.</creator><creatorcontrib>Zhang, T. ; McHugh, P.E. ; Leen, S.B.</creatorcontrib><description>► 3D FE implementation of continuum damage mechanics for multiaxial fatigue. ► Validation for uniaxial and notched fatigue and fretting fatigue for Ti–6Al–4V. ► Automatic incrementation scheme for efficient computation of damage accumulation. ► Captures effect of contact slip on fatigue life for round-on-flat fretting geometry. ► Comparisons with critical-plane multiaxial fatigue approach for fretting. The three-dimensional finite element implementation of a continuum damage mechanics formulation for multiaxial fatigue is presented, incorporating elastic modulus reduction due to fatigue damage. The implementation is validated against theoretical and published experimental results for uniaxial and notched multiaxial fatigue under different combinations of mean and alternating stresses for Ti–6Al–4V. An automatic incrementation scheme is developed for efficient computation of damage accumulation and hence stress redistribution. The method is also implemented in two-dimensional, plane strain for fretting fatigue and is shown to successfully capture the effect of contact slip on fatigue life for a round-on-flat fretting geometry. Comparisons are also made with a critical-plane multiaxial fatigue approach for fretting. The work is a first step towards a more general fatigue damage approach to unify wear and fatigue prediction for fretting.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2012.04.011</identifier><identifier>CODEN: IJFADB</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computational efficiency ; Computational methods ; Continuum damage mechanics ; Crack propagation ; Exact sciences and technology ; Fatigue ; Fatigue (materials) ; Fatigue failure ; Finite element analysis ; Finite element method ; Fretting ; Fretting fatigue ; Mathematical analysis ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Ti–6Al–4V</subject><ispartof>International journal of fatigue, 2012-11, Vol.44, p.260-272</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-dc3c15fb572713a2981187eae5c080fbce4c5ac7fa9678cff401a4d5420722f83</citedby><cites>FETCH-LOGICAL-c378t-dc3c15fb572713a2981187eae5c080fbce4c5ac7fa9678cff401a4d5420722f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142112312001508$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26249461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, T.</creatorcontrib><creatorcontrib>McHugh, P.E.</creatorcontrib><creatorcontrib>Leen, S.B.</creatorcontrib><title>Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue</title><title>International journal of fatigue</title><description>► 3D FE implementation of continuum damage mechanics for multiaxial fatigue. ► Validation for uniaxial and notched fatigue and fretting fatigue for Ti–6Al–4V. ► Automatic incrementation scheme for efficient computation of damage accumulation. ► Captures effect of contact slip on fatigue life for round-on-flat fretting geometry. ► Comparisons with critical-plane multiaxial fatigue approach for fretting. The three-dimensional finite element implementation of a continuum damage mechanics formulation for multiaxial fatigue is presented, incorporating elastic modulus reduction due to fatigue damage. The implementation is validated against theoretical and published experimental results for uniaxial and notched multiaxial fatigue under different combinations of mean and alternating stresses for Ti–6Al–4V. An automatic incrementation scheme is developed for efficient computation of damage accumulation and hence stress redistribution. The method is also implemented in two-dimensional, plane strain for fretting fatigue and is shown to successfully capture the effect of contact slip on fatigue life for a round-on-flat fretting geometry. Comparisons are also made with a critical-plane multiaxial fatigue approach for fretting. The work is a first step towards a more general fatigue damage approach to unify wear and fatigue prediction for fretting.</description><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Computational methods</subject><subject>Continuum damage mechanics</subject><subject>Crack propagation</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue (materials)</subject><subject>Fatigue failure</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fretting</subject><subject>Fretting fatigue</subject><subject>Mathematical analysis</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Ti–6Al–4V</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVpodukv6G6FHqxO5LllX0MIUkLgVySs5iMR1sttryV5JL8-3jZJdeeZg7fe2_mCfFNQa1AbX_u67D3WMJu4VqD0jWYGpT6IDaqs33VmFZ_FBtQRldK6eaz-JLzHgB6sO1G8G2IobDkkSeORYbpcNpWxznK2ctpGUvAl4CjpDmWEJdlkgNOuGM5Mf3BGChLPyd5GDFEiXGQPnFZyZ08H3YpPnkcM389zwvxdHvzeP2run-4-319dV9RY7tSDdSQav1za7VVDeq-U-sPjNwSdOCfiQ21SNZjv7UdeW9AoRlao8Fq7bvmQvw4-R7S_HfhXNwUMvE4YuR5yU5Bp7Uy0NoVtSeU0pxzYu8OKUyYXlfIHYt1e_derDsW68C4tdhV-f0cgplw9Akjhfwu11tterM9clcnjteP_wVOLlPgSDyExFTcMIf_Zr0BaNGUuQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Zhang, T.</creator><creator>McHugh, P.E.</creator><creator>Leen, S.B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20121101</creationdate><title>Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue</title><author>Zhang, T. ; McHugh, P.E. ; Leen, S.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-dc3c15fb572713a2981187eae5c080fbce4c5ac7fa9678cff401a4d5420722f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Computational methods</topic><topic>Continuum damage mechanics</topic><topic>Crack propagation</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue (materials)</topic><topic>Fatigue failure</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fretting</topic><topic>Fretting fatigue</topic><topic>Mathematical analysis</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Ti–6Al–4V</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, T.</creatorcontrib><creatorcontrib>McHugh, P.E.</creatorcontrib><creatorcontrib>Leen, S.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, T.</au><au>McHugh, P.E.</au><au>Leen, S.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue</atitle><jtitle>International journal of fatigue</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>44</volume><spage>260</spage><epage>272</epage><pages>260-272</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><coden>IJFADB</coden><abstract>► 3D FE implementation of continuum damage mechanics for multiaxial fatigue. ► Validation for uniaxial and notched fatigue and fretting fatigue for Ti–6Al–4V. ► Automatic incrementation scheme for efficient computation of damage accumulation. ► Captures effect of contact slip on fatigue life for round-on-flat fretting geometry. ► Comparisons with critical-plane multiaxial fatigue approach for fretting. The three-dimensional finite element implementation of a continuum damage mechanics formulation for multiaxial fatigue is presented, incorporating elastic modulus reduction due to fatigue damage. The implementation is validated against theoretical and published experimental results for uniaxial and notched multiaxial fatigue under different combinations of mean and alternating stresses for Ti–6Al–4V. An automatic incrementation scheme is developed for efficient computation of damage accumulation and hence stress redistribution. The method is also implemented in two-dimensional, plane strain for fretting fatigue and is shown to successfully capture the effect of contact slip on fatigue life for a round-on-flat fretting geometry. Comparisons are also made with a critical-plane multiaxial fatigue approach for fretting. The work is a first step towards a more general fatigue damage approach to unify wear and fatigue prediction for fretting.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2012.04.011</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2012-11, Vol.44, p.260-272
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_miscellaneous_1082214057
source ScienceDirect Freedom Collection (Elsevier)
subjects Applied sciences
Computational efficiency
Computational methods
Continuum damage mechanics
Crack propagation
Exact sciences and technology
Fatigue
Fatigue (materials)
Fatigue failure
Finite element analysis
Finite element method
Fretting
Fretting fatigue
Mathematical analysis
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Ti–6Al–4V
title Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20implementation%20of%20multiaxial%20continuum%20damage%20mechanics%20for%20plain%20and%20fretting%20fatigue&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Zhang,%20T.&rft.date=2012-11-01&rft.volume=44&rft.spage=260&rft.epage=272&rft.pages=260-272&rft.issn=0142-1123&rft.eissn=1879-3452&rft.coden=IJFADB&rft_id=info:doi/10.1016/j.ijfatigue.2012.04.011&rft_dat=%3Cproquest_cross%3E1082214057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082214057&rft_id=info:pmid/&rft_els_id=S0142112312001508&rfr_iscdi=true