Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue
► 3D FE implementation of continuum damage mechanics for multiaxial fatigue. ► Validation for uniaxial and notched fatigue and fretting fatigue for Ti–6Al–4V. ► Automatic incrementation scheme for efficient computation of damage accumulation. ► Captures effect of contact slip on fatigue life for rou...
Gespeichert in:
Veröffentlicht in: | International journal of fatigue 2012-11, Vol.44, p.260-272 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 272 |
---|---|
container_issue | |
container_start_page | 260 |
container_title | International journal of fatigue |
container_volume | 44 |
creator | Zhang, T. McHugh, P.E. Leen, S.B. |
description | ► 3D FE implementation of continuum damage mechanics for multiaxial fatigue. ► Validation for uniaxial and notched fatigue and fretting fatigue for Ti–6Al–4V. ► Automatic incrementation scheme for efficient computation of damage accumulation. ► Captures effect of contact slip on fatigue life for round-on-flat fretting geometry. ► Comparisons with critical-plane multiaxial fatigue approach for fretting.
The three-dimensional finite element implementation of a continuum damage mechanics formulation for multiaxial fatigue is presented, incorporating elastic modulus reduction due to fatigue damage. The implementation is validated against theoretical and published experimental results for uniaxial and notched multiaxial fatigue under different combinations of mean and alternating stresses for Ti–6Al–4V. An automatic incrementation scheme is developed for efficient computation of damage accumulation and hence stress redistribution. The method is also implemented in two-dimensional, plane strain for fretting fatigue and is shown to successfully capture the effect of contact slip on fatigue life for a round-on-flat fretting geometry. Comparisons are also made with a critical-plane multiaxial fatigue approach for fretting. The work is a first step towards a more general fatigue damage approach to unify wear and fatigue prediction for fretting. |
doi_str_mv | 10.1016/j.ijfatigue.2012.04.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082214057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112312001508</els_id><sourcerecordid>1082214057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-dc3c15fb572713a2981187eae5c080fbce4c5ac7fa9678cff401a4d5420722f83</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVpodukv6G6FHqxO5LllX0MIUkLgVySs5iMR1sttryV5JL8-3jZJdeeZg7fe2_mCfFNQa1AbX_u67D3WMJu4VqD0jWYGpT6IDaqs33VmFZ_FBtQRldK6eaz-JLzHgB6sO1G8G2IobDkkSeORYbpcNpWxznK2ctpGUvAl4CjpDmWEJdlkgNOuGM5Mf3BGChLPyd5GDFEiXGQPnFZyZ08H3YpPnkcM389zwvxdHvzeP2run-4-319dV9RY7tSDdSQav1za7VVDeq-U-sPjNwSdOCfiQ21SNZjv7UdeW9AoRlao8Fq7bvmQvw4-R7S_HfhXNwUMvE4YuR5yU5Bp7Uy0NoVtSeU0pxzYu8OKUyYXlfIHYt1e_derDsW68C4tdhV-f0cgplw9Akjhfwu11tterM9clcnjteP_wVOLlPgSDyExFTcMIf_Zr0BaNGUuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082214057</pqid></control><display><type>article</type><title>Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Zhang, T. ; McHugh, P.E. ; Leen, S.B.</creator><creatorcontrib>Zhang, T. ; McHugh, P.E. ; Leen, S.B.</creatorcontrib><description>► 3D FE implementation of continuum damage mechanics for multiaxial fatigue. ► Validation for uniaxial and notched fatigue and fretting fatigue for Ti–6Al–4V. ► Automatic incrementation scheme for efficient computation of damage accumulation. ► Captures effect of contact slip on fatigue life for round-on-flat fretting geometry. ► Comparisons with critical-plane multiaxial fatigue approach for fretting.
The three-dimensional finite element implementation of a continuum damage mechanics formulation for multiaxial fatigue is presented, incorporating elastic modulus reduction due to fatigue damage. The implementation is validated against theoretical and published experimental results for uniaxial and notched multiaxial fatigue under different combinations of mean and alternating stresses for Ti–6Al–4V. An automatic incrementation scheme is developed for efficient computation of damage accumulation and hence stress redistribution. The method is also implemented in two-dimensional, plane strain for fretting fatigue and is shown to successfully capture the effect of contact slip on fatigue life for a round-on-flat fretting geometry. Comparisons are also made with a critical-plane multiaxial fatigue approach for fretting. The work is a first step towards a more general fatigue damage approach to unify wear and fatigue prediction for fretting.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2012.04.011</identifier><identifier>CODEN: IJFADB</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computational efficiency ; Computational methods ; Continuum damage mechanics ; Crack propagation ; Exact sciences and technology ; Fatigue ; Fatigue (materials) ; Fatigue failure ; Finite element analysis ; Finite element method ; Fretting ; Fretting fatigue ; Mathematical analysis ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Ti–6Al–4V</subject><ispartof>International journal of fatigue, 2012-11, Vol.44, p.260-272</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-dc3c15fb572713a2981187eae5c080fbce4c5ac7fa9678cff401a4d5420722f83</citedby><cites>FETCH-LOGICAL-c378t-dc3c15fb572713a2981187eae5c080fbce4c5ac7fa9678cff401a4d5420722f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142112312001508$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26249461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, T.</creatorcontrib><creatorcontrib>McHugh, P.E.</creatorcontrib><creatorcontrib>Leen, S.B.</creatorcontrib><title>Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue</title><title>International journal of fatigue</title><description>► 3D FE implementation of continuum damage mechanics for multiaxial fatigue. ► Validation for uniaxial and notched fatigue and fretting fatigue for Ti–6Al–4V. ► Automatic incrementation scheme for efficient computation of damage accumulation. ► Captures effect of contact slip on fatigue life for round-on-flat fretting geometry. ► Comparisons with critical-plane multiaxial fatigue approach for fretting.
The three-dimensional finite element implementation of a continuum damage mechanics formulation for multiaxial fatigue is presented, incorporating elastic modulus reduction due to fatigue damage. The implementation is validated against theoretical and published experimental results for uniaxial and notched multiaxial fatigue under different combinations of mean and alternating stresses for Ti–6Al–4V. An automatic incrementation scheme is developed for efficient computation of damage accumulation and hence stress redistribution. The method is also implemented in two-dimensional, plane strain for fretting fatigue and is shown to successfully capture the effect of contact slip on fatigue life for a round-on-flat fretting geometry. Comparisons are also made with a critical-plane multiaxial fatigue approach for fretting. The work is a first step towards a more general fatigue damage approach to unify wear and fatigue prediction for fretting.</description><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Computational methods</subject><subject>Continuum damage mechanics</subject><subject>Crack propagation</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue (materials)</subject><subject>Fatigue failure</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fretting</subject><subject>Fretting fatigue</subject><subject>Mathematical analysis</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Ti–6Al–4V</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVpodukv6G6FHqxO5LllX0MIUkLgVySs5iMR1sttryV5JL8-3jZJdeeZg7fe2_mCfFNQa1AbX_u67D3WMJu4VqD0jWYGpT6IDaqs33VmFZ_FBtQRldK6eaz-JLzHgB6sO1G8G2IobDkkSeORYbpcNpWxznK2ctpGUvAl4CjpDmWEJdlkgNOuGM5Mf3BGChLPyd5GDFEiXGQPnFZyZ08H3YpPnkcM389zwvxdHvzeP2run-4-319dV9RY7tSDdSQav1za7VVDeq-U-sPjNwSdOCfiQ21SNZjv7UdeW9AoRlao8Fq7bvmQvw4-R7S_HfhXNwUMvE4YuR5yU5Bp7Uy0NoVtSeU0pxzYu8OKUyYXlfIHYt1e_derDsW68C4tdhV-f0cgplw9Akjhfwu11tterM9clcnjteP_wVOLlPgSDyExFTcMIf_Zr0BaNGUuQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Zhang, T.</creator><creator>McHugh, P.E.</creator><creator>Leen, S.B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20121101</creationdate><title>Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue</title><author>Zhang, T. ; McHugh, P.E. ; Leen, S.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-dc3c15fb572713a2981187eae5c080fbce4c5ac7fa9678cff401a4d5420722f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Computational methods</topic><topic>Continuum damage mechanics</topic><topic>Crack propagation</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue (materials)</topic><topic>Fatigue failure</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fretting</topic><topic>Fretting fatigue</topic><topic>Mathematical analysis</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Ti–6Al–4V</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, T.</creatorcontrib><creatorcontrib>McHugh, P.E.</creatorcontrib><creatorcontrib>Leen, S.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, T.</au><au>McHugh, P.E.</au><au>Leen, S.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue</atitle><jtitle>International journal of fatigue</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>44</volume><spage>260</spage><epage>272</epage><pages>260-272</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><coden>IJFADB</coden><abstract>► 3D FE implementation of continuum damage mechanics for multiaxial fatigue. ► Validation for uniaxial and notched fatigue and fretting fatigue for Ti–6Al–4V. ► Automatic incrementation scheme for efficient computation of damage accumulation. ► Captures effect of contact slip on fatigue life for round-on-flat fretting geometry. ► Comparisons with critical-plane multiaxial fatigue approach for fretting.
The three-dimensional finite element implementation of a continuum damage mechanics formulation for multiaxial fatigue is presented, incorporating elastic modulus reduction due to fatigue damage. The implementation is validated against theoretical and published experimental results for uniaxial and notched multiaxial fatigue under different combinations of mean and alternating stresses for Ti–6Al–4V. An automatic incrementation scheme is developed for efficient computation of damage accumulation and hence stress redistribution. The method is also implemented in two-dimensional, plane strain for fretting fatigue and is shown to successfully capture the effect of contact slip on fatigue life for a round-on-flat fretting geometry. Comparisons are also made with a critical-plane multiaxial fatigue approach for fretting. The work is a first step towards a more general fatigue damage approach to unify wear and fatigue prediction for fretting.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2012.04.011</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-1123 |
ispartof | International journal of fatigue, 2012-11, Vol.44, p.260-272 |
issn | 0142-1123 1879-3452 |
language | eng |
recordid | cdi_proquest_miscellaneous_1082214057 |
source | ScienceDirect Freedom Collection (Elsevier) |
subjects | Applied sciences Computational efficiency Computational methods Continuum damage mechanics Crack propagation Exact sciences and technology Fatigue Fatigue (materials) Fatigue failure Finite element analysis Finite element method Fretting Fretting fatigue Mathematical analysis Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Ti–6Al–4V |
title | Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20implementation%20of%20multiaxial%20continuum%20damage%20mechanics%20for%20plain%20and%20fretting%20fatigue&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Zhang,%20T.&rft.date=2012-11-01&rft.volume=44&rft.spage=260&rft.epage=272&rft.pages=260-272&rft.issn=0142-1123&rft.eissn=1879-3452&rft.coden=IJFADB&rft_id=info:doi/10.1016/j.ijfatigue.2012.04.011&rft_dat=%3Cproquest_cross%3E1082214057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082214057&rft_id=info:pmid/&rft_els_id=S0142112312001508&rfr_iscdi=true |